Active Filters

  • (-) Journal = Biomacromolecules
Search Results 1 - 20 of 39
Select Page
Benchmarking the humidity-dependent mechanical response of (nano)fibrillated cellulose and dissolved polysaccharides as sustainable sand amendments
Dali, M. H. A., Abidnejad, R., Salim, M. H., Bhattarai, M., Imani, M., Rojas, O. J., … Tardy, B. L. (2024). Benchmarking the humidity-dependent mechanical response of (nano)fibrillated cellulose and dissolved polysaccharides as sustainable sand amendments. Biomacromolecules. https://doi.org/10.1021/acs.biomac.3c01294
3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications
Giubilini, A., Messori, M., Bondioli, F., Minetola, P., Iuliano, L., Nyström, G., … Siqueira, G. (2023). 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules, 24(9), 3961-3971. https://doi.org/10.1021/acs.biomac.3c00263
Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering
Lutz-Bueno, V., Diaz, A., Wu, T., Nyström, G., Geiger, T., & Antonini, C. (2022). Hierarchical structure of cellulose nanofibril-based foams explored by multimodal X-ray scattering. Biomacromolecules, 23(3), 676-686. https://doi.org/10.1021/acs.biomac.1c00521
Melanized-cationic cellulose nanofiber foams for bioinspired removal of cationic dyes
Tran-Ly, A. N., De France, K. J., Rupper, P., Schwarze, F. W. M. R., Reyes, C., Nyström, G., … Ribera, J. (2021). Melanized-cationic cellulose nanofiber foams for bioinspired removal of cationic dyes. Biomacromolecules, 22(11), 4681-4690. https://doi.org/10.1021/acs.biomac.1c00942
Self-assembly pathways and antimicrobial properties of lysozyme in different aggregation states
Kummer, N., Wu, T., De France, K. J., Zuber, F., Ren, Q., Fischer, P., … Nyström, G. (2021). Self-assembly pathways and antimicrobial properties of lysozyme in different aggregation states. Biomacromolecules, 22(10), 4327-4336. https://doi.org/10.1021/acs.biomac.1c00870
Fundamental studies of hybrid poly(2-(diisopropylamino)ethyl methacrylate)/poly(<em>N</em>-vinylpyrrolidone) films and capsules
Ng, S. L., Best, J. P., Kempe, K., Liang, K., Johnston, A. P. R., Such, G. K., & Caruso, F. (2014). Fundamental studies of hybrid poly(2-(diisopropylamino)ethyl methacrylate)/poly(N-vinylpyrrolidone) films and capsules. Biomacromolecules, 15(7), 2784-2792. https://doi.org/10.1021/bm500640t
Customized fading scaffolds: strong polyorthoester networks via thiol-ene cross-linking for cytocompatible surface-eroding materials in 3D printing
Herwig, G., Pérez-Madrigal, M. M., & Dove, A. P. (2021). Customized fading scaffolds: strong polyorthoester networks via thiol-ene cross-linking for cytocompatible surface-eroding materials in 3D printing. Biomacromolecules, 22(4), 1472-1483. https://doi.org/10.1021/acs.biomac.0c01668
Tissue inhibitor of metalloproteinase (TIMP) peptidomimetic as an adjunctive therapy for infectious keratitis
Neidhart, B., Kowalska, M., Valentin, J. D. P., Gall, F. M., Ren, Q., Riedl, R., … Rottmar, M. (2021). Tissue inhibitor of metalloproteinase (TIMP) peptidomimetic as an adjunctive therapy for infectious keratitis. Biomacromolecules, 22(2), 629-639. https://doi.org/10.1021/acs.biomac.0c01473
Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology
De France, K. J., Kummer, N., Ren, Q., Campioni, S., & Nyström, G. (2020). Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology. Biomacromolecules, 21(12), 5139-5146. https://doi.org/10.1021/acs.biomac.0c01267
Nanoscale chemical features of the natural fibrous material wood
Gusenbauer, C., Jakob, D. S., Xu, X. G., Vezenov, D. V., Cabane, É., & Konnerth, J. (2020). Nanoscale chemical features of the natural fibrous material wood. Biomacromolecules, 21(10), 4244-4252. https://doi.org/10.1021/acs.biomac.0c01028
Designing cellulose nanofibrils for stabilization of fluid interfaces
Bertsch, P., Arcari, M., Geue, T., Mezzenga, R., Nyström, G., & Fischer, P. (2019). Designing cellulose nanofibrils for stabilization of fluid interfaces. Biomacromolecules, 20(12), 4574-4580. https://doi.org/10.1021/acs.biomac.9b01384
Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs
Trachsel, L., Johnbosco, C., Lang, T., Benetti, E. M., & Zenobi-Wong, M. (2019). Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs. Biomacromolecules, 20, 4502-4511. https://doi.org/10.1021/acs.biomac.9b01266
Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density
Arcari, M., Zuccarella, E., Axelrod, R., Adamcik, J., Sánchez-Ferrer, A., Mezzenga, R., & Nyström, G. (2019). Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density. Biomacromolecules, 20(3), 1288-1296. https://doi.org/10.1021/acs.biomac.8b01706
Formation of nanofibrous structure in biopolymer aerogel during supercritical CO&lt;sub&gt;2&lt;/sub&gt; processing: the case of chitosan aerogel
Takeshita, S., Sadeghpour, A., Malfait, W. J., Konishi, A., Otake, K., & Yoda, S. (2019). Formation of nanofibrous structure in biopolymer aerogel during supercritical CO2 processing: the case of chitosan aerogel. Biomacromolecules, 20(5), 2051-2057. https://doi.org/10.1021/acs.biomac.9b00246
Solvent-controlled spatial distribution of SI-AGET-ATRP grafted polymers in lignocellulosic materials
Vidiella del Blanco, M., Gomez, V., Keplinger, T., Cabane, E., & Grafulha Morales, L. F. (2019). Solvent-controlled spatial distribution of SI-AGET-ATRP grafted polymers in lignocellulosic materials. Biomacromolecules, 20(1), 336-346. https://doi.org/10.1021/acs.biomac.8b01393
Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media
Zoppe, J. O., Xu, X., Känel, C., Orsolini, P., Siqueira, G., Tingaut, P., … Klok, H. A. (2016). Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media. Biomacromolecules, 17(4), 1404-1413. https://doi.org/10.1021/acs.biomac.6b00011
Softwood lignin self-assembly for nanomaterial design
Salentinig, S., & Schubert, M. (2017). Softwood lignin self-assembly for nanomaterial design. Biomacromolecules, 18(8), 2649-2653. https://doi.org/10.1021/acs.biomac.7b00822
Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration
Sehaqui, H., Kulasinski, K., Pfenninger, N., Zimmermann, T., & Tingaut, P. (2017). Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromolecules, 18(1), 242-248. https://doi.org/10.1021/acs.biomac.6b01548
Effect of cell density on osteoblastic differentiation and matrix degradation of biomimetic dense collagen scaffolds
Bitar, M., Brown, R. A., Salih, V., Kidane, A. G., Knowles, J. C., & Nazhat, S. N. (2008). Effect of cell density on osteoblastic differentiation and matrix degradation of biomimetic dense collagen scaffolds. Biomacromolecules, 9(1), 129-135. https://doi.org/10.1021/bm701112w
Identification of two acyl-CoA synthetases from <I>Pseudomonas putida</I> GPo1: One is located at the surface of polyhydroxyalkanoates granules
Ruth, K., de Roo, G., Egli, T., & Ren, Q. (2008). Identification of two acyl-CoA synthetases from Pseudomonas putida GPo1: One is located at the surface of polyhydroxyalkanoates granules. Biomacromolecules, 9(6), 1652-1659. https://doi.org/10.1021/bm8001655