Active Filters

  • (-) Journal = Carbon
Search Results 1 - 20 of 23
Select Page
Optimized graphene electrodes for contacting graphene nanoribbons
Braun, O., Overbeck, J., El Abbassi, M., Käser, S., Furrer, R., Olziersky, A., … Calame, M. (2021). Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 184, 331-339. https://doi.org/10.1016/j.carbon.2021.08.001
Direct observation of the elasticity-texture relationship in pyrolytic carbon via in situ micropillar compression and digital image correlation
Kabel, J., Edwards, T. E. J., Sharma, A., Michler, J., & Hosemann, P. (2021). Direct observation of the elasticity-texture relationship in pyrolytic carbon via in situ micropillar compression and digital image correlation. Carbon, 182, 571-584. https://doi.org/10.1016/j.carbon.2021.06.045
Influence of 1D and 2D carbon nanostructures in silica-based aerogels
Lamy-Mendes, A., Malfait, W. J., Sadeghpour, A., Girão, A. V., Silva, R. F., & Durães, L. (2021). Influence of 1D and 2D carbon nanostructures in silica-based aerogels. Carbon, 180, 146-162. https://doi.org/10.1016/j.carbon.2021.05.004
Graphene nanoribbons with mixed cove-cape-zigzag edge structure
Shinde, P. P., Liu, J., Dienel, T., Gröning, O., Dumslaff, T., Mühlinghaus, M., … Passerone, D. (2021). Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon, 175, 50-59. https://doi.org/10.1016/j.carbon.2020.12.069
Influence of helium ion irradiation on the structure and strength of diamond
Chen, M., Best, J. P., Shorubalko, I., Michler, J., Spolenak, R., & Wheeler, J. M. (2020). Influence of helium ion irradiation on the structure and strength of diamond. Carbon, 158, 337-345. https://doi.org/10.1016/j.carbon.2019.10.078
Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes
Martini, L., Chen, Z., Mishra, N., Borin Barin, G., Fantuzzi, P., Ruffieux, P., … Candini, A. (2019). Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes. Carbon, 146, 36-43. https://doi.org/10.1016/j.carbon.2019.01.071
Confined electron and hole states in semiconducting carbon nanotube sub-10 nm artificial quantum dots
Buchs, G., Bercioux, D., Mayrhofer, L., & Gröning, O. (2018). Confined electron and hole states in semiconducting carbon nanotube sub-10 nm artificial quantum dots. Carbon, 132, 304-311. https://doi.org/10.1016/j.carbon.2018.02.031
Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond
Cadot, G. B. J., Thomas, K., Best, J. P., Taylor, A. A., Michler, J., Axinte, D. A., & Billingham, J. (2018). Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond. Carbon, 127, 349-365. https://doi.org/10.1016/j.carbon.2017.10.030
Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model
Drasler, B., Kucki, M., Delhaes, F., Buerki-Thurnherr, T., Vanhecke, D., Korejwo, D., … Wick, P. (2018). Single exposure to aerosolized graphene oxide and graphene nanoplatelets did not initiate an acute biological response in a 3D human lung model. Carbon, 137, 125-135. https://doi.org/10.1016/j.carbon.2018.05.012
HiPIMS carbon coatings show covalent protein binding that imparts enhanced hemocompatibility
Ganesan, R., Akhavan, B., Hiob, M. A., McKenzie, D. R., Weiss, A. S., & Bilek, M. M. M. (2018). HiPIMS carbon coatings show covalent protein binding that imparts enhanced hemocompatibility. Carbon, 139, 118-128. https://doi.org/10.1016/j.carbon.2018.06.024
Stability of edge magnetism in functionalized zigzag graphene nanoribbons
Shinde, P. P., Gröning, O., Wang, S., Ruffieux, P., Pignedoli, C. A., Fasel, R., & Passerone, D. (2017). Stability of edge magnetism in functionalized zigzag graphene nanoribbons. Carbon, 124, 123-132. https://doi.org/10.1016/j.carbon.2017.08.018
Laser-induced chemical transformation of graphene oxide–iron oxide nanoparticles composites deposited on polymer substrates
Pérez del Pino, A., György, E., Logofatu, C., Puigmartí-Luis, J., & Gao, W. (2015). Laser-induced chemical transformation of graphene oxide–iron oxide nanoparticles composites deposited on polymer substrates. Carbon, 93, 373-383. https://doi.org/10.1016/j.carbon.2015.05.078
Characteristics of airborne fractal-like agglomerates of carbon nanotubes
Wang, J., Kyoung Bahk, Y., Chen, S. C., & Pui, D. Y. H. (2015). Characteristics of airborne fractal-like agglomerates of carbon nanotubes. Carbon, 93, 441-450. https://doi.org/10.1016/j.carbon.2015.05.079
Single-step functionalization of vertically aligned MWCNTs with Cu and Ni by chemical reduction of copper and nickel acetyl acetonate in benzyl alcohol
Ilari, G. M., Kränzlin, N., Longtin, R., Sanchez-Valencia, J. R., Schneider, S., Rossell, M. D., … Erni, R. (2014). Single-step functionalization of vertically aligned MWCNTs with Cu and Ni by chemical reduction of copper and nickel acetyl acetonate in benzyl alcohol. Carbon, 73, 146-154. https://doi.org/10.1016/j.carbon.2014.02.050
Impact of sonication pretreatment on carbon nanotubes: a transmission electron microscopy study
Rossell, M. D., Kuebel, C., Ilari, G., Rechberger, F., Heiligtag, F. J., Niederberger, M., … Erni, R. (2013). Impact of sonication pretreatment on carbon nanotubes: a transmission electron microscopy study. Carbon, 61, 404-411. https://doi.org/10.1016/j.carbon.2013.05.024
Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites
Chatterjee, S., Nafezarefi, F., Tai, N. H., Schlagenhauf, L., Nüesch, F. A., & Chu, B. T. T. (2012). Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon, 50(15), 5380-5386. https://doi.org/10.1016/j.carbon.2012.07.021
Viscoelasticity and high buckling stress of dense carbon nanotube brushes
Pathak, S., Cambaz, Z. G., Kalidindi, S. R., Swadener, J. G., & Gogotsi, Y. (2009). Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon, 47(8), 1969-1976. https://doi.org/10.1016/j.carbon.2009.03.042
Alignment of graphene nanoribbons by an electric field
Wang, Z. (2009). Alignment of graphene nanoribbons by an electric field. Carbon, 47(13), 3050-3053. https://doi.org/10.1016/j.carbon.2009.07.026
The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction
Belyanskaya, L., Manser, P., Spohn, P., Bruinink, A., & Wick, P. (2007). The reliability and limits of the MTT reduction assay for carbon nanotubes-cell interaction. Carbon, 45(13), 2643-2648. https://doi.org/10.1016/j.carbon.2007.08.010
Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact
Pulskamp, K., Wörle-Knirsch, J. M., Hennrich, F., Kern, K., & Krug, H. F. (2007). Human lung epithelial cells show biphasic oxidative burst after single-walled carbon nanotube contact. Carbon, 45(11), 2241-2249. https://doi.org/10.1016/j.carbon.2007.06.054