Active Filters

  • (-) Journal = Ceramics International
  • (-) Empa Laboratories ≠ 502 Advanced Analytical Technologies
  • (-) Empa Authors ≠ Orlovskaya, Nina
Search Results 1 - 20 of 57
Select Page
Sol–gel synthesized (Bi<sub>0.5</sub>Ba<sub>0.5</sub>Ag)<sub>0.5</sub> (NiMn)<sub>0.5</sub>O<sub>3</sub> perovskite ceramic: an exploration of its structural characteristics, dielectric properties and electrical conductivity
Tayari, F., Iben Nassar, K., Benamara, M., Essid, M., Soreto Teixeira, S., & Graça, M. P. F. (2024). Sol–gel synthesized (Bi0.5Ba0.5Ag)0.5 (NiMn)0.5O3 perovskite ceramic: an exploration of its structural characteristics, dielectric properties and electrical conductivity. Ceramics International, 50(7 Part A), 11207-11215. https://doi.org/10.1016/j.ceramint.2024.01.022
DLP 3D printing of high strength semi-translucent zirconia ceramics with relatively low-loaded UV-curable formulations
Komissarenko, D., Roland, S., Seeber, B. S. M., Graule, T., & Blugan, G. (2023). DLP 3D printing of high strength semi-translucent zirconia ceramics with relatively low-loaded UV-curable formulations. Ceramics International, 49(12), 21008-21016. https://doi.org/10.1016/j.ceramint.2023.03.236
Debinding of additively manufactured parts from spinel powders with particle sizes below 200 nm
Zubrzycka, P., Radecka, M., Graule, T., & Stuer, M. (2023). Debinding of additively manufactured parts from spinel powders with particle sizes below 200 nm. Ceramics International, 49(7), 11355-11367. https://doi.org/10.1016/j.ceramint.2022.11.335
SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes
Ferraris, M., Gili, F., Lizarralde, X., Igartua, A., Mendoza, G., Blugan, G., … Casalegno, V. (2022). SiC particle reinforced Al matrix composites brazed on aluminum body for lightweight wear resistant brakes. Ceramics International, 48(8), 10941-10951. https://doi.org/10.1016/j.ceramint.2021.12.313
Lightweight and robust Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>/carbon nanotubes foam with tuneable and highly efficient microwave absorption performance
Hu, K., Wang, H., Cheng, W., Rao, Y., Pan, L., Zhang, C. J., … Yang, J. (2022). Lightweight and robust Ti3C2Tx/carbon nanotubes foam with tuneable and highly efficient microwave absorption performance. Ceramics International, 48(21), 31129-31137. https://doi.org/10.1016/j.ceramint.2022.05.325
High precision pulp-based sacrificial molds: a solution towards mass production of hollow ceramic spheres for deep sea applications
Rastogi, V. K., Sturzenegger, P. N., Gonzenbach, U. T., Vetterli, M., Naikade, M., Kesari, K. K., … Blugan, G. (2022). High precision pulp-based sacrificial molds: a solution towards mass production of hollow ceramic spheres for deep sea applications. Ceramics International, 48(6), 8235-8244. https://doi.org/10.1016/j.ceramint.2021.12.028
Analysis of c-lattice parameters to evaluate Na<sub>2</sub>O loss from and Na<sub>2</sub>O content in β''-alumina ceramics
Bay, M. C., Heinz, M. V. F., Danilewsky, A. N., Battaglia, C., & Vogt, U. F. (2021). Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β''-alumina ceramics. Ceramics International, 47(10), 13402-13408. https://doi.org/10.1016/j.ceramint.2021.01.197
Non-linear mechanical properties and dynamic response of silicon nitride bioceramic
Du, X., Blugan, G., Künniger, T., Lee, S. S., Vladislavova, L., & Ferguson, S. J. (2021). Non-linear mechanical properties and dynamic response of silicon nitride bioceramic. Ceramics International, 47(23), 33525-33536. https://doi.org/10.1016/j.ceramint.2021.08.261
Electrochemical performance of polymer-derived SiOC and SiTiOC ceramic electrodes for artificial cardiac pacemaker applications
Jang, J., Warriam Sasikumar, P. V., Navaee, F., Hagelüken, L., Blugan, G., & Brugger, J. (2021). Electrochemical performance of polymer-derived SiOC and SiTiOC ceramic electrodes for artificial cardiac pacemaker applications. Ceramics International, 47(6), 7593-7601. https://doi.org/10.1016/j.ceramint.2020.11.098
Metal cation complexes as dispersing agents for non-aqueous powder suspensions
Zubrzycka, P., Radecka, M., Graule, T., & Stuer, M. (2021). Metal cation complexes as dispersing agents for non-aqueous powder suspensions. Ceramics International, 47(13), 18443-18454. https://doi.org/10.1016/j.ceramint.2021.03.168
Electrospinning of Y&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment
Heuer, C., Storti, E., Graule, T., & Aneziris, C. G. (2020). Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment. Ceramics International, 46(8), 12001-12008. https://doi.org/10.1016/j.ceramint.2020.01.240
Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel
Hadian, A., Zamani, C., & Clemens, F. J. (2019). Sintering behavior of NbC based cemented carbides bonded with M2 high speed steel. Ceramics International, 45(7), 8616-8625. https://doi.org/10.1016/j.ceramint.2019.01.181
Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
Lanfant, B., Leconte, Y., Debski, N., Bonnefont, G., Pinault, M., Mayne-L′Hermite, M., … Bernard, F. (2019). Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceramics International, 45(2), 2566-2575. https://doi.org/10.1016/j.ceramint.2018.10.187
Maskless lithography of silazanes for fabrication of ceramic micro-components
Ligon, S. C., Blugan, G., & Kuebler, J. (2019). Maskless lithography of silazanes for fabrication of ceramic micro-components. Ceramics International, 45(2), 2345-2350. https://doi.org/10.1016/j.ceramint.2018.10.151
Pre-processing of hematite-doped alumina granules for selective laser melting
Makowska, M., Pfeiffer, S., Casati, N., Florio, K., Vetterli, M., Wegener, K., … van Swygenhoven, H. (2019). Pre-processing of hematite-doped alumina granules for selective laser melting. Ceramics International, 45(14), 17014-17022. https://doi.org/10.1016/j.ceramint.2019.05.251
Stable crack propagation in free standing thermal sprayed Al<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub>—ZrO<sub>2</sub>—TiO<sub>2</sub> coatings
Neumann, M., Gehre, P., Kuebler, J., Dadivanyan, N., Jelitto, H., Schneider, G. A., & Aneziris, C. G. (2019). Stable crack propagation in free standing thermal sprayed Al2O3 and Al2O3—ZrO2—TiO2 coatings. Ceramics International, 45(7), 8761-8766. https://doi.org/10.1016/j.ceramint.2019.01.200
A processing route for dip-coating and characterization of multi-structured ceramic foam
Rastogi, V. K., Jiang, B., Sturzenegger, P. N., Gonzenbach, U. T., Vetterli, M., Blugan, G., & Kuebler, J. (2019). A processing route for dip-coating and characterization of multi-structured ceramic foam. Ceramics International, 45(17), 21887-21893. https://doi.org/10.1016/j.ceramint.2019.07.199
Kinetics of crystallization in 13.2Li<sub>2</sub>O-67.6SiO<sub>2</sub>-14.49Al<sub>2</sub>O<sub>3</sub>-3.3TiO<sub>2</sub>-0.4BaO-0.97ZnO glass ceramic powder: Part I: a model-free vs. model-fitting approach
Savabieh, H., Alizadeh, P., Nayebi, B., & Clemens, F. J. (2019). Kinetics of crystallization in 13.2Li2O-67.6SiO2-14.49Al2O3-3.3TiO2-0.4BaO-0.97ZnO glass ceramic powder: Part I: a model-free vs. model-fitting approach. Ceramics International, 45(7), 8856-8865. https://doi.org/10.1016/j.ceramint.2019.01.214
Nanoindentation deformation and cracking in sapphire
Trabadelo, V., Pathak, S., Saeidi, F., Parlinska-Wojtan, M., & Wasmer, K. (2019). Nanoindentation deformation and cracking in sapphire. Ceramics International, 45(8), 9835-9845. https://doi.org/10.1016/j.ceramint.2019.02.022
Structural, magnetic and optical properties of BiFeO&lt;sub&gt;3&lt;/sub&gt; synthesized by the solvent-deficient method
Zeljković, S., Ivas, T., Maruyama, H., & Nino, J. C. (2019). Structural, magnetic and optical properties of BiFeO3 synthesized by the solvent-deficient method. Ceramics International, 45(16), 19793-19798. https://doi.org/10.1016/j.ceramint.2019.06.234