Active Filters

  • (-) Journal = Ceramics International
  • (-) Empa Laboratories ≠ 201 High Performance Ceramics
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Analysis of c-lattice parameters to evaluate Na<sub>2</sub>O loss from and Na<sub>2</sub>O content in β''-alumina ceramics
Bay, M. C., Heinz, M. V. F., Danilewsky, A. N., Battaglia, C., & Vogt, U. F. (2021). Analysis of c-lattice parameters to evaluate Na2O loss from and Na2O content in β''-alumina ceramics. Ceramics International, 47(10), 13402-13408. https://doi.org/10.1016/j.ceramint.2021.01.197
Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
Lanfant, B., Leconte, Y., Debski, N., Bonnefont, G., Pinault, M., Mayne-L′Hermite, M., … Bernard, F. (2019). Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceramics International, 45(2), 2566-2575. https://doi.org/10.1016/j.ceramint.2018.10.187
Nanoindentation deformation and cracking in sapphire
Trabadelo, V., Pathak, S., Saeidi, F., Parlinska-Wojtan, M., & Wasmer, K. (2019). Nanoindentation deformation and cracking in sapphire. Ceramics International, 45(8), 9835-9845. https://doi.org/10.1016/j.ceramint.2019.02.022
Structural, magnetic and optical properties of BiFeO&lt;sub&gt;3&lt;/sub&gt; synthesized by the solvent-deficient method
Zeljković, S., Ivas, T., Maruyama, H., & Nino, J. C. (2019). Structural, magnetic and optical properties of BiFeO3 synthesized by the solvent-deficient method. Ceramics International, 45(16), 19793-19798. https://doi.org/10.1016/j.ceramint.2019.06.234
Ionic liquid assisted fabrication of high performance SWNTs reinforced ceramic matrix nano-composites
Suna, N., Jeurgens, L. P. H., Burghard, Z., & Bill, J. (2017). Ionic liquid assisted fabrication of high performance SWNTs reinforced ceramic matrix nano-composites. Ceramics International, 43(2), 2297-2304. https://doi.org/10.1016/j.ceramint.2016.11.013
Mechanical behavior of Ce<SUB>0.9</SUB>Gd<SUB>0.1</SUB>O<SUB>1.95</SUB>-La<SUB>0.6</SUB>Sr<SUB>0.4</SUB>Co<SUB>0.2</SUB>Fe<SUB>0.8</SUB>O<SUB>3−δ</SUB> oxygen electrode with a coral microstructure for solid oxide fuel cell and solid oxide electrolyzer cel
Sar, J., Almeida, A., Ghisleni, R., Dessemond, L., & Djurado, E. (2016). Mechanical behavior of Ce0.9Gd0.1O1.95-La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen electrode with a coral microstructure for solid oxide fuel cell and solid oxide electrolyzer cell. Ceramics International, 42(15), 16981-16991. https://doi.org/10.1016/j.ceramint.2016.07.204
Relief of the residual stresses in Si<SUB>3</SUB>N<SUB>4</SUB>/Invar joints by multi-layered braze structure – experiments and simulation
Wang, T., Ivas, T., Lee, W., Zhang, J., & Leinenbach, C. (2016). Relief of the residual stresses in Si3N4/Invar joints by multi-layered braze structure – experiments and simulation. Ceramics International, 42(4), 7080-7087. https://doi.org/10.1016/j.ceramint.2016.01.096
Plasticity and fracture of sapphire at room temperature: load-controlled microcompression of four different orientations
Montagne, A., Pathak, S., Maeder, X., & Michler, J. (2014). Plasticity and fracture of sapphire at room temperature: load-controlled microcompression of four different orientations. Ceramics International, 40(1), 2083-2090. https://doi.org/10.1016/j.ceramint.2013.07.121
Glycine combusted ZnFe<sub>2</sub>O<sub>4</sub> gas sensor: evaluation of structural, morphological and gas response properties
Patil, J. Y., Nadargi, D. Y., Gurav, J. L., Mulla, I. S., & Suryavanshi, S. S. (2014). Glycine combusted ZnFe2O4 gas sensor: evaluation of structural, morphological and gas response properties. Ceramics International, 40(7), 10607-10613. https://doi.org/10.1016/j.ceramint.2014.03.041
Synthesis, sintering and dielectric properties of a BaTiO<SUB>3</SUB>–Ni composite
Saleem, M., Kim, I. S., Song, J. S., Jeong, S. J., Kim, M. S., & Yoon, S. (2014). Synthesis, sintering and dielectric properties of a BaTiO3–Ni composite. Ceramics International, 40(5), 7329-7335. https://doi.org/10.1016/j.ceramint.2013.12.075
MoSi<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> electroconductive ceramic composites
Köbel, S., Plüschke, J., Vogt, U., & Graule, T. J. (2004). MoSi2-Al2O3 electroconductive ceramic composites. Ceramics International, 30(8), 2105-2110. https://doi.org/10.1016/j.ceramint.2003.11.015