Active Filters

  • (-) Journal = ChemCatChem
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
CO<sub>2</sub>-promoted catalytic process forming higher alcohols with tunable nature at record productivity
Luk, H. T., Novak, G., Safonova, O. V., Siol, S., Stewart, J. A., Curulla Ferré, D., … Pérez‐Ramírez, J. (2020). CO2-promoted catalytic process forming higher alcohols with tunable nature at record productivity. ChemCatChem, 12(10), 2732-2744. https://doi.org/10.1002/cctc.202000059
Tailoring nitrogen‐doped carbons as hosts for single‐atom catalysts
Büchele, S., Chen, Z., Mitchell, S., Hauert, R., Krumeich, F., & Pérez‐Ramírez, J. (2019). Tailoring nitrogen‐doped carbons as hosts for single‐atom catalysts. ChemCatChem, 11(12), 2812-2820. https://doi.org/10.1002/cctc.201900547
Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst
Caparrós, F. J., Soler, L., Rossell, M. D., Angurell, I., Piccolo, L., Rossell, O., & Llorca, J. (2018). Remarkable carbon dioxide hydrogenation to ethanol on a palladium/iron oxide single-atom catalyst. ChemCatChem, 10(11), 2365-2369. https://doi.org/10.1002/cctc.201800362
Activated TiC-SiC composite for natural gas upgrading via catalytic oxyhalogenation
Zichittella, G., Puértolas, B., Siol, S., Paunović, V., Mitchell, S., & Pérez-Ramírez, J. (2018). Activated TiC-SiC composite for natural gas upgrading via catalytic oxyhalogenation. ChemCatChem, 10(6), 1282-1290. https://doi.org/10.1002/cctc.201701632
Promotion of hydrogen desorption from palladium surfaces by fluoropolymer coating
Delmelle, R., Ngene, P., Dam, B., Bleiner, D., & Borgschulte, A. (2016). Promotion of hydrogen desorption from palladium surfaces by fluoropolymer coating. ChemCatChem, 8(9), 1646-1650. https://doi.org/10.1002/cctc.201600168
Structural modification of Ni/γ-Al<SUB>2</SUB>O<SUB>3</SUB> with boron for enhanced carbon resistance during CO methanation
Kambolis, A., Ferri, D., Lu, Y., Yannopoulos, S. N., Pokrant, S., Rentsch, D., & Kröcher, O. (2015). Structural modification of Ni/γ-Al2O3 with boron for enhanced carbon resistance during CO methanation. ChemCatChem, 7(20), 3261-3265. https://doi.org/10.1002/cctc.201500567
Operando attenuated total reflectance FTIR spectroscopy: studies on the different selectivity observed in benzyl alcohol oxidation
Villa, A., Ferri, D., Campisi, S., Chan-Thaw, C. E., Lu, Y., Kröcher, O., & Prati, L. (2015). Operando attenuated total reflectance FTIR spectroscopy: studies on the different selectivity observed in benzyl alcohol oxidation. ChemCatChem, 7(16), 2534-2541. https://doi.org/10.1002/cctc.201500432
Size and shape-controlled Pd nanocrystals on ZnO and SiO<SUB>2</SUB>: when the nature of the support determines the active phase
Crespo-Quesada, M., Yoon, S., Jin, M., Xia, Y., Weidenkaff, A., & Kiwi-Minsker, L. (2014). Size and shape-controlled Pd nanocrystals on ZnO and SiO2: when the nature of the support determines the active phase. ChemCatChem, 6(3), 767-771. https://doi.org/10.1002/cctc.201301043
Industrial RuO2-based Deacon catalysts: carrier stabilization and active phase content optimization
Amrute, A. P., Mondelli, C., Schmidt, T., Hauert, R., & Pérez-Ramírez, J. (2013). Industrial RuO2-based Deacon catalysts: carrier stabilization and active phase content optimization. ChemCatChem, 5(3), 748-756. https://doi.org/10.1002/cctc.201200704
How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry
Armbrüster, M., Behrens, M., Cinquini, F., Föttinger, K., Grin, Y., Haghofer, A., … Wowsnick, G. (2012). How to control the selectivity of palladium-based catalysts in hydrogenation reactions: the role of subsurface chemistry. ChemCatChem, 4(8), 1048-1063. https://doi.org/10.1002/cctc.201200100
Au on Nanosized NiO: a cooperative effect between Au and nanosized NiO in the base-free alcohol oxidation
Villa, A., Chan-Thaw, C. E., Veith, G. M., More, K. L., Ferri, D., & Prati, L. (2011). Au on Nanosized NiO: a cooperative effect between Au and nanosized NiO in the base-free alcohol oxidation. ChemCatChem, 3(10), 1612-1618. https://doi.org/10.1002/cctc.201100161
Catalyst composition, morphology and reaction pathway in the growth of “super-long” carbon nanotubes
Joshi, R., Engstler, J., Houben, L., Bar Sadan, M., Weidenkaff, A., Mandaliev, P., … Schneider, J. J. (2010). Catalyst composition, morphology and reaction pathway in the growth of “super-long” carbon nanotubes. ChemCatChem, 2(9), 1069-1073. https://doi.org/10.1002/cctc.201000037
Magnetically separable gold catalyst for the aerobic oxidation of amines
Aschwanden, L., Panella, B., Rossbach, P., Keller, B., & Baiker, A. (2009). Magnetically separable gold catalyst for the aerobic oxidation of amines. ChemCatChem, 1(1), 111-115. https://doi.org/10.1002/cctc.200900085
Probing surface properties and reaction intermediates during heterogeneous catalytic oxidation of acetaldehyde
Kydd, R., Teoh, W. Y., Scott, J., Ferri, D., & Amal, R. (2009). Probing surface properties and reaction intermediates during heterogeneous catalytic oxidation of acetaldehyde. ChemCatChem, 1(2), 286-294. https://doi.org/10.1002/cctc.200900099