Active Filters

  • (-) Journal = Crystal Growth and Design
  • (-) Empa Laboratories ≠ 302 Cellulose & Wood Materials
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Amino acid and oligopeptide effects on calcium carbonate solutions
Finney, A. R., Innocenti Malini, R., Freeman, C. L., & Harding, J. H. (2020). Amino acid and oligopeptide effects on calcium carbonate solutions. Crystal Growth and Design, 20(5), 3077-3092. https://doi.org/10.1021/acs.cgd.9b01693
Simulation of calcium phosphate prenucleation clusters in aqueous solution: association beyond ion pairing
Garcia, N. A., Malini, R. I., Freeman, C. L., Demichelis, R., Raiteri, P., Sommerdijk, N. A. J. M., … Gale, J. D. (2019). Simulation of calcium phosphate prenucleation clusters in aqueous solution: association beyond ion pairing. Crystal Growth and Design, 19(11), 6422-6430. https://doi.org/10.1021/acs.cgd.9b00889
The water–amorphous calcium carbonate interface and its interactions with amino acids
Innocenti Malini, R., Finney, A. R., Hall, S. A., Freeman, C. L., & Harding, J. H. (2017). The water–amorphous calcium carbonate interface and its interactions with amino acids. Crystal Growth and Design, 17(11), 5811-5822. https://doi.org/10.1021/acs.cgd.7b00874
Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy
Knoedler, M., Bologna, N., Schmid, H., Borg, M., Moselund, K. E., Wirths, S., … Riel, H. (2017). Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy. Crystal Growth and Design, 17(12), 6297-6302. https://doi.org/10.1021/acs.cgd.7b00983
Study of the preparation of amorphous itraconazole formulations
Fernández-Ronco, M. P., Salvalaglio, M., Kluge, J., & Mazzotti, M. (2015). Study of the preparation of amorphous itraconazole formulations. Crystal Growth and Design, 15(6), 2686-2694. https://doi.org/10.1021/cg501892j
Integration of GaN crystals on micropatterned Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy
Isa, F., Chèze, C., Siekacz, M., Hauswald, C., Lähnemann, J., Fernández-Garrido, S., … Miglio, L. (2015). Integration of GaN crystals on micropatterned Si(0 0 1) substrates by plasma-assisted molecular beam epitaxy. Crystal Growth and Design, 15(10), 4886-4892. https://doi.org/10.1021/acs.cgd.5b00727
Combinatorial high-vacuum chemical vapor deposition of textured hafnium-doped lithium niobate thin films on sapphire
Dabirian, A., Kuzminykh, Y., Sandu, S. C., Harada, S., Wagner, E., Brodard, P., … Hoffmann, P. (2011). Combinatorial high-vacuum chemical vapor deposition of textured hafnium-doped lithium niobate thin films on sapphire. Crystal Growth and Design, 11(1), 203-209. https://doi.org/10.1021/cg1011583
Microwave plasma nitridation of SrTiO<SUB>3</SUB>: a quantitative EELS, TEM, and STEM-HAADF analysis of the SrTiO<SUB>3−</SUB><I><SUB>x</SUB></I>N<I><SUB>y</SUB></I> growth and the structural evolution
Aguirre, M. H., Shkabko, A., & Weidenkaff, A. (2010). Microwave plasma nitridation of SrTiO3: a quantitative EELS, TEM, and STEM-HAADF analysis of the SrTiO3−xNy growth and the structural evolution. Crystal Growth and Design, 10(8), 3562-3567. https://doi.org/10.1021/cg100474x
Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere
Bechelany, M., Maeder, X., Riesterer, J., Hankache, J., Lerose, D., Christiansen, S., … Philippe, L. (2010). Synthesis mechanisms of organized gold nanoparticles: influence of annealing temperature and atmosphere. Crystal Growth and Design, 10(2), 587-596. https://doi.org/10.1021/cg900981q
Growth of crystalline TiO<SUB>2</SUB> by plasma enhanced chemical vapor deposition
Borras, A., Sanchez-Valencia, J. R., Widmer, R., Rico, V. J., Justo, A., & Gonzalez-Elipe, A. R. (2009). Growth of crystalline TiO2 by plasma enhanced chemical vapor deposition. Crystal Growth and Design, 9(6), 2868-2876. https://doi.org/10.1021/cg9001779
Coverage and enantiomeric excess dependent enantiomorphism in two-dimensional molecular crystals
Parschau, M., Fasel, R., & Ernst, K. H. (2008). Coverage and enantiomeric excess dependent enantiomorphism in two-dimensional molecular crystals. Crystal Growth and Design, 8(6), 1890-1896. https://doi.org/10.1021/cg701100r