Active Filters

  • (-) Journal = Environmental Science: Nano
Search Results 1 - 16 of 16
  • RSS Feed
Select Page
Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets
Geitner, N. K., Ogilvie Hendren, C., Cornelis, G., Kaegi, R., Lead, J. R., Lowry, G. V., … Wiesner, M. R. (2020). Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 7(1), 13-36. https://doi.org/10.1039/c9en00448c
Inventory of country-specific emissions of engineered nanomaterials throughout the life cycle
Kuenen, J., Pomar-Portillo, V., Vilchez, A., Visschedijk, A., Denier van der Gon, H., Vázquez-Campos, S., … Adam, V. (2020). Inventory of country-specific emissions of engineered nanomaterials throughout the life cycle. Environmental Science: Nano, 7(12), 3824-3839. https://doi.org/10.1039/D0EN00422G
Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus <i>Rhodonia placenta</i>
Civardi, C., Grolimund, D., Schubert, M., Wick, P., & Schwarze, F. W. M. R. (2019). Micronized copper-treated wood: copper remobilization into spores from the copper-tolerant wood-destroying fungus Rhodonia placenta. Environmental Science: Nano, 6(2), 425-431. https://doi.org/10.1039/C8EN01110A
Determining what really counts: modeling and measuring nanoparticle number concentrations
Petersen, E. J., Montoro Bustos, A. R., Toman, B., Johnson, M. E., Ellefson, M., Caceres, G. C., … Roesslein, M. (2019). Determining what really counts: modeling and measuring nanoparticle number concentrations. Environmental Science: Nano, 6(9), 2876-2896. https://doi.org/10.1039/C9EN00462A
Prospective environmental risk assessment of nanocellulose for Europe
Stoudmann, N., Nowack, B., & Som, C. (2019). Prospective environmental risk assessment of nanocellulose for Europe. Environmental Science: Nano, 6(8), 2520-2531. https://doi.org/10.1039/C9EN00472F
Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process
Sørensen, S. N., Baun, A., Burkard, M., Dal Maso, M., Foss Hansen, S., Harrison, S., … Spurgeon, D. J. (2019). Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano, 6(2), 505-518. https://doi.org/10.1039/C8EN00933C
Low-dose addition of silver nanoparticles stresses marine plankton communities
Tsiola, A., Toncelli, C., Fodelianakis, S., Michoud, G., Bucheli, T. D., Gavriilidou, A., … Pitta, P. (2018). Low-dose addition of silver nanoparticles stresses marine plankton communities. Environmental Science: Nano, 5(8), 1965-1980. https://doi.org/10.1039/c8en00195b
Redefining environmental nanomaterial flows: consequences of the regulatory nanomaterial definition on the results of environmental exposure models
Wigger, H., Wohlleben, W., & Nowack, B. (2018). Redefining environmental nanomaterial flows: consequences of the regulatory nanomaterial definition on the results of environmental exposure models. Environmental Science: Nano, 5(6), 1372-1385. https://doi.org/10.1039/C8EN00137E
European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling
Adam, V., & Nowack, B. (2017). European country-specific probabilistic assessment of nanomaterial flows towards landfilling, incineration and recycling. Environmental Science: Nano, 4(10), 1961-1973. https://doi.org/10.1039/C7EN00487G
Mobility of metallic (nano)particles in leachates from landfills containing waste incineration residues
Mitrano, D. M., Mehrabi, K., Arroyo Rojas Dasilva, Y., & Nowack, B. (2017). Mobility of metallic (nano)particles in leachates from landfills containing waste incineration residues. Environmental Science: Nano, 4(2), 480-492. https://doi.org/10.1039/C6EN00565A
Digging below the surface: the hidden quality of the OECD nanosilver dossier
Schmutz, M., Som, C., Krug, H. F., & Nowack, B. (2017). Digging below the surface: the hidden quality of the OECD nanosilver dossier. Environmental Science: Nano, 4(6), 1209-1215. https://doi.org/10.1039/C7EN00088J
Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing
Mitrano, D. M., Limpiteeprakan, P., Babel, S., & Nowack, B. (2016). Durability of nano-enhanced textiles through the life cycle: releases from landfilling after washing. Environmental Science: Nano, 3(2), 375-387. https://doi.org/10.1039/C6EN00023A
Silver nanoparticle toxicity and association with the alga <I>Euglena gracilis</I>
Li, X., Schirmer, K., Bernard, L., Sigg, L., Pillai, S., & Behra, R. (2015). Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environmental Science: Nano, 2(6), 594-602. https://doi.org/10.1039/C5EN00093A
Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements
Nowack, B., Baalousha, M., Bornhöft, N., Chaudhry, Q., Cornelis, G., Cotterill, J., … Wontner-Smith, T. (2015). Progress towards the validation of modeled environmental concentrations of engineered nanomaterials by analytical measurements. Environmental Science: Nano, 2(5), 421-428. https://doi.org/10.1039/c5en00100e
Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach
Sun, T. Y., Conroy, G., Donner, E., Hungerbühler, K., Lombi, E., & Nowack, B. (2015). Probabilistic modelling of engineered nanomaterial emissions to the environment: a spatio-temporal approach. Environmental Science: Nano, 2(4), 340-351. https://doi.org/10.1039/C5EN00004A
Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS)
Mitrano, D. M., Ranville, J. F., Bednar, A., Kazor, K., Hering, A. S., & Higgins, C. P. (2014). Tracking dissolution of silver nanoparticles at environmentally relevant concentrations in laboratory, natural, and processed waters using single particle ICP-MS (spICP-MS). Environmental Science: Nano, 1(3), 248-259. https://doi.org/10.1039/C3EN00108C