Active Filters

  • (-) Journal = Journal of Electronic Materials
  • (-) Empa Laboratories ≠ 202 Joining Technologies and Corrosion
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Chemical and thermoelectric properties of hot pressed and spark plasma sintered type-I clathrate Ba<sub>8</sub>Cu<sub>4.8</sub>Si<sub>41.2</sub>
Yan, X., Populoh, S., Weidenkaff, A., Rogl, P., & Paschen, S. (2016). Chemical and thermoelectric properties of hot pressed and spark plasma sintered type-I clathrate Ba8Cu4.8Si41.2. Journal of Electronic Materials, 45(3), 1840-1845. https://doi.org/10.1007/s11664-015-4242-2
Effect of process and service conditions on TLP-bonded components with (Ag,Ni–)Sn interlayer combinations
Lis, A., & Leinenbach, C. (2015). Effect of process and service conditions on TLP-bonded components with (Ag,Ni–)Sn interlayer combinations. Journal of Electronic Materials, 44(11), 4576-4588. https://doi.org/10.1007/s11664-015-3982-3
Contact resistance of Ti-Si-C-Ag and Ti-Si-C-Ag-Pd nanocomposite coatings
Sarius, N. G., Lauridsen, J., Lewin, E., Jansson, U., Högberg, H., Öberg, Å., … Hultman, L. (2012). Contact resistance of Ti-Si-C-Ag and Ti-Si-C-Ag-Pd nanocomposite coatings. Journal of Electronic Materials, 41(3), 560-567. https://doi.org/10.1007/s11664-011-1813-8
Influence of thermal aging phenomena on thermoelectric properties of Al-substituted ZnO
Vogel-Schäuble, N., Dujardin, R., Weidenkaff, A., & Aguirre, M. H. (2012). Influence of thermal aging phenomena on thermoelectric properties of Al-substituted ZnO. Journal of Electronic Materials, 41(6), 1606-1614. https://doi.org/10.1007/s11664-011-1851-2
Thermoelectric properties of <em>in situ</em> formed Bi<sub>0.85</sub>Sb<sub>0.15</sub>/Bi-rich particles composite
Ceresara, S., Codecasa, M., Passaretti, F., Tomeš, P., Weidenkaff, A., & Fanciulli, C. (2011). Thermoelectric properties of in situ formed Bi0.85Sb0.15/Bi-rich particles composite. Journal of Electronic Materials, 40(5), 557-560. https://doi.org/10.1007/s11664-010-1450-7
ZnO nanowires, nanotubes, and complex hierarchical structures obtained by electrochemical deposition
Elias, J., Michler, J., Philippe, L., Lin, M. Y., Couteau, C., Lerondel, G., & Lévy-Clément, C. (2011). ZnO nanowires, nanotubes, and complex hierarchical structures obtained by electrochemical deposition. Journal of Electronic Materials, 40(5), 728-732. https://doi.org/10.1007/s11664-011-1530-3
Investigation of the thermoelectric properties of LiAlSi and LiAlGe
Barth, J., Fecher, G. H., Schwind, M., Beleanu, A., Felser, C., Shkabko, A., … Köhne, M. (2010). Investigation of the thermoelectric properties of LiAlSi and LiAlGe. Journal of Electronic Materials, 39(9), 1856-1860. https://doi.org/10.1007/s11664-010-1076-9
Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module
Tomeš, P., Robert, R., Trottmann, M., Bocher, L., Aguirre, M. H., Bitschi, A., … Weidenkaff, A. (2010). Synthesis and characterization of new ceramic thermoelectrics implemented in a thermoelectric oxide module. Journal of Electronic Materials, 39(9), 1696-1703. https://doi.org/10.1007/s11664-010-1214-4
Influence of group IV-Te alloying on nanocomposite structure and thermoelectric properties of Bi<sub>2</sub>Te<sub>3</sub> compounds
Ebling, D. G., Jacquot, A., Böttner, H., Kirste, L., Schmidt, J., & Aguirre, M. (2009). Influence of group IV-Te alloying on nanocomposite structure and thermoelectric properties of Bi2Te3 compounds. Journal of Electronic Materials, 38(7), 1450-1455. https://doi.org/10.1007/s11664-009-0832-1
Local creep in SnAg3.8Cu0.7 lead-free solder
Jud, P. P., Grossmann, G., Sennhauser, U., & Uggowitzer, P. J. (2005). Local creep in SnAg3.8Cu0.7 lead-free solder. Journal of Electronic Materials, 34(9), 1206-1214. https://doi.org/10.1007/s11664-005-0265-4
The H<sub>2</sub> plasma treatment of silver contacts: impact on wire-bonding performance
Bielmann, M., Ruffieux, P., Schwaller, P., Sudan, P., Schlapbach, L., & Gröning, P. (2002). The H2 plasma treatment of silver contacts: impact on wire-bonding performance. Journal of Electronic Materials, 31(12), 1316-1320. https://doi.org/10.1007/s11664-002-0114-7