Active Filters

  • (-) Journal = of Materials Chemistry A
Search Results 1 - 20 of 43
Select Page
Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review
Dalapati, G. K., Sharma, H., Guchhait, A., Chakrabarty, N., Bamola, P., Liu, Q., … Sharma, M. (2021). Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. Journal of Materials Chemistry A, 9(31), 16621-16684. https://doi.org/10.1039/d1ta01291f
A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries
Fu, C., Iacob, M., Sheima, Y., Battaglia, C., Duchêne, L., Seidl, L., … Remhof, A. (2021). A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 9(19), 11794-11801. https://doi.org/10.1039/D1TA02689E
Chitin-amyloid synergism and their use as sustainable structural adhesives
Greca, L. G., De France, K. J., Majoinen, J., Kummer, N., Luotonen, O. I. V., Campioni, S., … Tardy, B. L. (2021). Chitin-amyloid synergism and their use as sustainable structural adhesives. Journal of Materials Chemistry A, 9(35), 19741-19753. https://doi.org/10.1039/d1ta03215a
Janus wood membranes for autonomous water transport and fog collection
Ding, Y., Tu, K., Burgert, I., & Keplinger, T. (2020). Janus wood membranes for autonomous water transport and fog collection. Journal of Materials Chemistry A, 8(42), 22001-22008. https://doi.org/10.1039/d0ta07544b
How to functionalise metal-organic frameworks to enable guest nanocluster embedment
King, J., Zhang, L., Doszczeczko, S., Sambalova, O., Luo, H., Rohman, F., … Szilágyi, P. Á. (2020). How to functionalise metal-organic frameworks to enable guest nanocluster embedment. Journal of Materials Chemistry A, 8(9), 4889-4897. https://doi.org/10.1039/c9ta12837a
Revealing the perovskite formation kinetics during chemical vapour deposition
Moser, T., Artuk, K., Jiang, Y., Feurer, T., Gilshtein, E., Tiwari, A. N., & Fu, F. (2020). Revealing the perovskite formation kinetics during chemical vapour deposition. Journal of Materials Chemistry A, 8(42), 21973-21982. https://doi.org/10.1039/D0TA04501B
Instability of p-i-n perovskite solar cells under reverse bias
Razera, R. A. Z., Jacobs, D. A., Fu, F., Fiala, P., Dussouillez, M., Sahli, F., … Jeangros, Q. (2020). Instability of p-i-n perovskite solar cells under reverse bias. Journal of Materials Chemistry A, 8(1), 242-250. https://doi.org/10.1039/c9ta12032g
Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding
Zeng, Z., Wang, C., Wu, T., Han, D., Luković, M., Pan, F., … Nyström, G. (2020). Nanocellulose assisted preparation of ambient dried, large-scale and mechanically robust carbon nanotube foams for electromagnetic interference shielding. Journal of Materials Chemistry A, 8(35), 17969-17979. https://doi.org/10.1039/D0TA05961G
Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM
Zhang, B., Shi, H., Ju, Z., Huang, K., Lian, C., Wang, Y., … Tao, X. (2020). Arrayed silk fibroin for high-performance Li metal batteries and atomic interface structure revealed by cryo-TEM. Journal of Materials Chemistry A, 8(48), 26045-26054. https://doi.org/10.1039/d0ta09753e
Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes
Afyon, S., Kravchyk, K. V., Wang, S., van den Broek, J., Hänsel, C., Kovalenko, M. V., & Rupp, J. L. M. (2019). Building better all-solid-state batteries with Li-garnet solid electrolytes and metalloid anodes. Journal of Materials Chemistry A, 7(37), 21299-21308. https://doi.org/10.1039/C9TA04999A
Nanofibrillated cellulose composites and wood derived scaffolds for functional materials
Keplinger, T., Wang, X., & Burgert, I. (2019). Nanofibrillated cellulose composites and wood derived scaffolds for functional materials. Journal of Materials Chemistry A, 7(7), 2981-2992. https://doi.org/10.1039/C8TA10711D
Ethanolamine-assisted low-temperature crystallization of hydroxide nanoparticle ink into transparent and conductive ITO layers
Liu, Y., Moser, T., Andres, C., Gorjan, L., Remhof, A., Clemens, F., … Romanyuk, Y. E. (2019). Ethanolamine-assisted low-temperature crystallization of hydroxide nanoparticle ink into transparent and conductive ITO layers. Journal of Materials Chemistry A, 7(7), 3083-3089. https://doi.org/10.1039/C8TA09891C
3D hierarchical porous indium catalyst for highly efficient electroreduction of CO<sub>2</sub>
Luo, W., Xie, W., Li, M., Zhang, J., & Züttel, A. (2019). 3D hierarchical porous indium catalyst for highly efficient electroreduction of CO2. Journal of Materials Chemistry A, 7(9), 4505-4515. https://doi.org/10.1039/c8ta11645h
Self-supported copper-based gas diffusion electrodes for CO&lt;sub&gt;2&lt;/sub&gt; electrochemical reduction
Zhang, J., Luo, W., & Züttel, A. (2019). Self-supported copper-based gas diffusion electrodes for CO2 electrochemical reduction. Journal of Materials Chemistry A, 7(46), 26285-26292. https://doi.org/10.1039/c9ta06736a
<i>Operando</i> X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni<small><sub>1–<i>x</i></sub></small>Fe<small><sub><i>x</i></sub></small>O<small><sub><i>y</i></sub></small> nanoparticl
Abbott, D. F., Fabbri, E., Borlaf, M., Bozza, F., Schäublin, R., Nachtegaal, M., … Schmidt, T. J. (2018). Operando X-ray absorption investigations into the role of Fe in the electrochemical stability and oxygen evolution activity of Ni1–xFexOy nanoparticles. Journal of Materials Chemistry A, 6(47), 24534-24549. https://doi.org/10.1039/c8ta09336a
Determination and optimization of material parameters of particle-based LaTiO<sub>2</sub>N photoelectrodes
Gaudy, Y. K., Dilger, S., Landsmann, S., Aschauer, U., Pokrant, S., & Haussener, S. (2018). Determination and optimization of material parameters of particle-based LaTiO2N photoelectrodes. Journal of Materials Chemistry A, 6(36), 17337-17352. https://doi.org/10.1039/c8ta03649g
The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds
Graczyk-Zajac, M., Vrankovic, D., Waleska, P., Hess, C., Sasikumar, P. V., Lauterbach, S., … Sorarù, G. D. (2018). The Li-storage capacity of SiOC glasses with and without mixed silicon oxycarbide bonds. Journal of Materials Chemistry A, 6(1), 93-103. https://doi.org/10.1039/c7ta09236a
SnP nanocrystals as anode materials for Na-ion batteries
Liu, J., Wang, S., Kravchyk, K., Ibáñez, M., Krumeich, F., Widmer, R., … Cabot, A. (2018). SnP nanocrystals as anode materials for Na-ion batteries. Journal of Materials Chemistry A, 6(23), 10958-10966. https://doi.org/10.1039/c8ta01492b
A self-forming nanocomposite concept for ZnO-based thermoelectrics
Zakharchuk, K. V., Widenmeyer, M., Alikin, D. O., Xie, W., Populoh, S., Mikhalev, S. M., … Kovalevsky, A. V. (2018). A self-forming nanocomposite concept for ZnO-based thermoelectrics. Journal of Materials Chemistry A, 6(27), 13386-13396. https://doi.org/10.1039/c8ta01463a
Nanocrystalline FeF<sub>3</sub> and MF<sub>2</sub> (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties
Guntlin, C. P., Zünd, T., Kravchyk, K. V., Wörle, M., Bodnarchuk, M. I., & Kovalenko, M. V. (2017). Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. Journal of Materials Chemistry A, 5(16), 7383-7393. https://doi.org/10.1039/c7ta00862g