| In situ lithiated ALD niobium oxide for improved long term cycling of layered oxide cathodes: a thin-film model study
Aribia, A., Sastre, J., Chen, X., Gilshtein, E., Futscher, M. H., Tiwari, A. N., & Romanyuk, Y. E. (2021). In situ lithiated ALD niobium oxide for improved long term cycling of layered oxide cathodes: a thin-film model study. Journal of the Electrochemical Society, 168(4), 040513 (9 pp.). https://doi.org/10.1149/1945-7111/abf215 |
| Passivity of holmium studied theoretically by potential-pH diagrams for selection of electrolytes and experimental proof of the formation of ultra-thin anodic films
Shahzad, K., Kollender, J. P., Mardare, C. C., Mardare, A. I., & Hassel, A. W. (2021). Passivity of holmium studied theoretically by potential-pH diagrams for selection of electrolytes and experimental proof of the formation of ultra-thin anodic films. Journal of the Electrochemical Society, 168(8), 081509 (16 pp.). https://doi.org/10.1149/1945-7111/ac120b |
| Electrodeposition of Tin selenide from oxalate-based aqueous solution
De Vos, M., Danine, A., Adam, L., Diliberto, S., Caballero-Calero, O., Martín-González, M., … Stein, N. (2020). Electrodeposition of Tin selenide from oxalate-based aqueous solution. Journal of the Electrochemical Society, 167(16), 162502 (10 pp.). https://doi.org/10.1149/1945-7111/abcb74 |
| Perspective-electrochemical stability of water-in-salt electrolytes
Kühnel, R. S., Reber, D., & Battaglia, C. (2020). Perspective-electrochemical stability of water-in-salt electrolytes. Journal of the Electrochemical Society, 167(7), 070544 (4 pp.). https://doi.org/10.1149/1945-7111/ab7c6f |
| Silicon corrosion in neutral media: the influence of confined geometries and crevice corrosion in simulated physiological solutions
Ilic, E., Pardo, A., Hauert, R., Schmutz, P., & Mischler, S. (2019). Silicon corrosion in neutral media: the influence of confined geometries and crevice corrosion in simulated physiological solutions. Journal of the Electrochemical Society, 166(6), C125-C133. https://doi.org/10.1149/2.0241906jes |
| High aspect-ratio nanocrystalline CuNi T-structures and micro-gears: synthesis, numerical modeling and characterization
Manzano, C. V., Schürch, P., Pethö, L., Bürki, G., Michler, J., & Philippe, L. (2019). High aspect-ratio nanocrystalline CuNi T-structures and micro-gears: synthesis, numerical modeling and characterization. Journal of the Electrochemical Society, 166(10), E310-E316. https://doi.org/10.1149/2.0961910jes |
| Acid washed, steam activated, coconut shell derived carbon for high power supercapacitor applications
Ashraf, C. M., Anilkumar, K. M., Jinisha, B., Manoj, M., Pradeep, V. S., & Jayalekshmi, S. (2018). Acid washed, steam activated, coconut shell derived carbon for high power supercapacitor applications. Journal of the Electrochemical Society, 165(5), A900-A909. https://doi.org/10.1149/2.0491805jes |
| Substrate purity effect on the defect formation and properties of amorphous anodic barrier Al<sub>2</sub>O<sub>3</sub>
González-Castaño, M., Döbeli, M., Araullo-Peters, V., Jeurgens, L. P. H., Schmutz, P., & Cancellieri, C. (2018). Substrate purity effect on the defect formation and properties of amorphous anodic barrier Al2O3. Journal of the Electrochemical Society, 165(7), C422-C431. https://doi.org/10.1149/2.1161807jes |
| The effect of electrolyte impurities on the thermoelectric properties of electrodeposited Bi<small><sub>2</sub></small>Te<small><sub>3</sub></small> films
Manzano, C. V., Abad, B., & Martín-González, M. (2018). The effect of electrolyte impurities on the thermoelectric properties of electrodeposited Bi2Te3 films. Journal of the Electrochemical Society, 165(14), D768-D773. https://doi.org/10.1149/2.1131814jes |
| Highly electrochemically stable morphology of mesoscale Co<sub>3</sub>O<sub>4</sub> flowerlike oriented aggregate (FLOA) for electrocatalytic water splitting
Bora, D. K., Müller, U., Constable, E. C., & Braun, A. (2017). Highly electrochemically stable morphology of mesoscale Co3O4 flowerlike oriented aggregate (FLOA) for electrocatalytic water splitting. Journal of the Electrochemical Society, 164(7), H526-H536. https://doi.org/10.1149/2.1451707jes |
| High performance anode-supported solid oxide fuel cells with thin film Yttria-Stabilized Zirconia membrane prepared by aerosol-assisted chemical vapor deposition
Jang, D. Y., Kim, M., Kim, J. W., Bae, K., Son, Jwon, Schlupp, M. V. F., & Shim, J. H. (2017). High performance anode-supported solid oxide fuel cells with thin film Yttria-Stabilized Zirconia membrane prepared by aerosol-assisted chemical vapor deposition. Journal of the Electrochemical Society, 164(6), F484-F490. https://doi.org/10.1149/2.0181706jes |
| Suppressing deep traps in self-organized TiO<SUB>2</SUB> nanotubes by Nb doping and optimized water content
Regonini, D., Groff, A., Sorarù, G. D., & Clemens, F. J. (2016). Suppressing deep traps in self-organized TiO2 nanotubes by Nb doping and optimized water content. Journal of the Electrochemical Society, 163(3), H243-H251. https://doi.org/10.1149/2.0131605jes |
| Dynamics in electrochromic windows interpreted with an extended logistic model
Roldán, R., & Romanyuk, Y. E. (2016). Dynamics in electrochromic windows interpreted with an extended logistic model. Journal of the Electrochemical Society, 163(8), E235-E240. https://doi.org/10.1149/2.1371608jes |
| A unifying view of the constant-phase-element and its role as an aging indicator for Li-Ion batteries
Cuervo-Reyes, E., Scheller, C. P., Held, M., & Sennhauser, U. (2015). A unifying view of the constant-phase-element and its role as an aging indicator for Li-Ion batteries. Journal of the Electrochemical Society, 162(8), A1585-A1591. https://doi.org/10.1149/2.0791508jes |
| Influence of Cu<sup>2+</sup> ion concentration on the uniform electrochemical growth of copper nanowires in ordered alumina template
Fedorov, F. S., Dunne, P., Gebert, A., & Uhlemann, M. (2015). Influence of Cu2+ ion concentration on the uniform electrochemical growth of copper nanowires in ordered alumina template. Journal of the Electrochemical Society, 162(12), D568-D574. https://doi.org/10.1149/2.0671512jes |
| Combinatorial chemical beam epitaxy of lithium niobate thin films on sapphire
Dabirian, A., Harada, S., Kuzminykh, Y., Sandu, S. C., Wagner, E., Benvenuti, G., … Hoffmann, P. (2011). Combinatorial chemical beam epitaxy of lithium niobate thin films on sapphire. Journal of the Electrochemical Society, 158(2), D72-D76. https://doi.org/10.1149/1.3519843 |
| In situ microtomographically monitored and electrochemically controlled corrosion initiation and propagation in AlMgSi alloy AA6016
Eckermann, F., Suter, T., Uggowitzer, P. J., Afseth, A., Stampanoni, M., Marone, F., & Schmutz, P. (2009). In situ microtomographically monitored and electrochemically controlled corrosion initiation and propagation in AlMgSi alloy AA6016. Journal of the Electrochemical Society, 156(1), C1-C7. https://doi.org/10.1149/1.2996269 |
| ICP-MS, SKPFM, XPS, and microcapillary investigation of the local corrosion mechanisms of WC-Co hardmetal
Hochstrasser-Kurz, S., Reiss, D., Suter, T., Latkoczy, C., Günther, D., Virtanen, S., … Schmutz, P. (2008). ICP-MS, SKPFM, XPS, and microcapillary investigation of the local corrosion mechanisms of WC-Co hardmetal. Journal of the Electrochemical Society, 155(8), C415-C426. https://doi.org/10.1149/1.2929822 |
| Synthesis and Characterization of La<SUB>0.6</SUB>Sr<SUB>0.4</SUB>Co<SUB>0.2</SUB>Fe<SUB>0.8</SUB>O<SUB>3−</SUB><SUB>δ </SUB>and Ba<SUB>0.5</SUB>Sr<SUB>0.5</SUB>Co<SUB>0.8</SUB>Fe<SUB>0.2</SUB>O<SUB>3−δ</SUB>
Ried, P., Holtappels, P., Wichser, A., Ulrich, A., & Graule, T. (2008). Synthesis and Characterization of La0.6Sr0.4Co0.2Fe0.8O3−δ and Ba0.5Sr0.5Co0.8Fe0.2O3−δ. Journal of the Electrochemical Society, 155(10), B1029-B1035. https://doi.org/10.1149/1.2960873 |
| A microelectrochemical investigation of alloy C22 in chloride solutions below the critical pitting temperature
Hodges, S., Laycock, N. J., Krouse, D. P., Virtanen, S., Schmutz, P., & Ryan, M. P. (2007). A microelectrochemical investigation of alloy C22 in chloride solutions below the critical pitting temperature. Journal of the Electrochemical Society, 154(2), C114-C119. https://doi.org/10.1149/1.2401052 |