| <em>In situ</em> testing of ultrathin diffusion barriers using complex multishell nanowires
Vogl, L. M., Schweizer, P., Maeder, X., Utke, I., Minor, A. M., & Michler, J. (2023). In situ testing of ultrathin diffusion barriers using complex multishell nanowires. Microscopy and Microanalysis, 29(1), 1585-1586. https://doi.org/10.1093/micmic/ozad067.815 |
| Application of a novel electron energy filter combined with a hybrid-pixel direct electron detector for the analysis of functional oxides by STEM/EELS with focus on weak signals and high spatio-temporal resolution
Erni, R., Ruiz Caridad, A., Vogel, A., & Rossell, M. D. (2022). Application of a novel electron energy filter combined with a hybrid-pixel direct electron detector for the analysis of functional oxides by STEM/EELS with focus on weak signals and high spatio-temporal resolution. Microscopy and Microanalysis, 28(S1), 2372-2373. https://doi.org/10.1017/S1431927622009102 |
| Direct observation of atomic scale diffusion processes using<em> in situ</em> HRSTEM
Schweizer, P., Pethö, L., Huszár, E., Vogl, L. M., Michler, J., & Maeder, X. (2022). Direct observation of atomic scale diffusion processes using in situ HRSTEM. Microscopy and Microanalysis, 28(Suppl. 1), 1892-1894. https://doi.org/10.1017/S1431927622007413 |
| <em>In situ</em> TEM study to unravel dynamic processes and phase transition during the synthesis of ultrathin crystalline ALD nanotubes
Vogl, L. M., Schweizer, P., Pethö, L., Sharma, A., Spiecker, E., Utke, I., & Michler, J. (2022). In situ TEM study to unravel dynamic processes and phase transition during the synthesis of ultrathin crystalline ALD nanotubes. Microscopy and Microanalysis, 28(Suppl. 1), 2316-2318. https://doi.org/10.1017/S143192762200890X |
| <em>In situ</em> atomic force microscopy depth-corrected three-dimensional focused ion beam based time-of-flight secondary ion mass spectroscopy: spatial resolution, surface roughness, oxidation
Pillatsch, L., Kalácska, S., Maeder, X., & Michler, J. (2021). In situ atomic force microscopy depth-corrected three-dimensional focused ion beam based time-of-flight secondary ion mass spectroscopy: spatial resolution, surface roughness, oxidation. Microscopy and Microanalysis, 27(1), 65-73. https://doi.org/10.1017/S1431927620024678 |
| <i>In situ</i> template assisted growth of Ag@Au bimetallic nanostructures
Ahmad, N., Keller, D., Rossell, M. D., & Erni, R. (2019). In situ template assisted growth of Ag@Au bimetallic nanostructures. Microscopy and Microanalysis, 25(S1), 41-42. https://doi.org/10.1017/S1431927618015933 |
| "Thou shalt not make unto thee any graven image": some remarks on x-ray scattering and materials science
Braun, A. (2018). "Thou shalt not make unto thee any graven image": some remarks on x-ray scattering and materials science. Microscopy and Microanalysis, 24(S2), 526-528. https://doi.org/10.1017/S1431927618014848 |
| Local band gap measurements by VEELS of thin film solar cells
Keller, D., Buecheler, S., Reinhard, P., Pianezzi, F., Pohl, D., Surrey, A., … Tiwari, A. N. (2014). Local band gap measurements by VEELS of thin film solar cells. Microscopy and Microanalysis, 20(4), 1246-1253. https://doi.org/10.1017/S1431927614000543 |
| In-situ TOF-SIMS and SFM measurements providing true 3D chemical characterization of inorganic and organic nanostructures
Niehuis, E., Moellers, R., Kollmer, F., Arlinghaus, H., Bernard, L., Hug, H. J., … Scheidemann, A. (2014). In-situ TOF-SIMS and SFM measurements providing true 3D chemical characterization of inorganic and organic nanostructures. Microscopy and Microanalysis, 20(Suppl. 3), 2086-2087. https://doi.org/10.1017/S1431927614012161 |
| Surface reduction in monoclinic BiVO<SUB>4</SUB> for photocatalytic applications
Rossell, M. D., Borgschulte, A., & Erni, R. (2014). Surface reduction in monoclinic BiVO4 for photocatalytic applications. Microscopy and Microanalysis, 20(Suppl. 3), 436-437. https://doi.org/10.1017/S1431927614003900 |
| Defects in two dimensional crystals: an ultra-high resolution aberration-corrected electron microscopy study
Alem, N., Ramasse, Q. M., Yazyev, O. V., Seabourne, C. R., Kisielowski, C. K., Hartel, P., … Zettl, A. (2012). Defects in two dimensional crystals: an ultra-high resolution aberration-corrected electron microscopy study. Microscopy and Microanalysis, 18(Suppl. 2), 1516-1517. https://doi.org/10.1017/S1431927612009439 |
| Atomic configuration of planar defects in multiferroic Ca-doped BiFeO<SUB>3</SUB> films
Rossell, M. D., Ramasse, Q. M., Erni, R., Yang, C. H., & Ramesh, R. (2010). Atomic configuration of planar defects in multiferroic Ca-doped BiFeO3 films. Microscopy and Microanalysis, 16(Suppl. 2), 96-97. https://doi.org/10.1017/S1431927610055868 |
| Toward reproducible three-dimensional microstructure analysis of granular materials and complex suspensions
Holzer, L., & Münch, B. (2009). Toward reproducible three-dimensional microstructure analysis of granular materials and complex suspensions. Microscopy and Microanalysis, 15(2), 130-146. https://doi.org/10.1017/S1431927609090163 |
| Three-dimensional characterization of cell clusters using synchrotron-radiation-based micro-computed tomography
Müller, B., Riedel, M., & Thurner, P. J. (2006). Three-dimensional characterization of cell clusters using synchrotron-radiation-based micro-computed tomography. Microscopy and Microanalysis, 12(2), 97-105. https://doi.org/10.1017/S1431927606060168 |
| Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites
Gasser, P., Klotz, U. E., Khalid, F. A., & Beffort, O. (2004). Site-specific specimen preparation by focused ion beam milling for transmission electron microscopy of metal matrix composites. Microscopy and Microanalysis, 10(2), 311-316. https://doi.org/10.1017/S1431927604040413 |