Active Filters

  • (-) Journal = Nanoscale
Search Results 1 - 20 of 70

Pages

  • RSS Feed
Select Page
A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters
Pan, F., Altenried, S., Scheibler, S., & Ren, Q. (2024). A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters. Nanoscale, 16(6), 3011-3023. https://doi.org/10.1039/d3nr05463b
<em>In situ</em> observation of the on-surface thermal dehydrogenation of n-octane on Pt(111)
Arribas, D., Villalobos-Vilda, V., Tosi, E., Lacovig, P., Baraldi, A., Bignardi, L., … Merino, P. (2023). In situ observation of the on-surface thermal dehydrogenation of n-octane on Pt(111). Nanoscale, 15(35), 14458-14467. https://doi.org/10.1039/d3nr02564k
On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges
Borin Barin, G., Di Giovannantonio, M., Lohr, T. G., Mishra, S., Kinikar, A., Perrin, M., … Ruffieux, P. (2023). On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. Nanoscale, 15(41), 16766-16774. https://doi.org/10.1039/D3NR03736C
Nanoscale electronic transport at graphene/pentacene van der Waals interface
Daher Mansour, M., Oswald, J., Beretta, D., Stiefel, M., Furrer, R., Calame, M., & Vuillaume, D. (2023). Nanoscale electronic transport at graphene/pentacene van der Waals interface. Nanoscale, 15(20), 9203-9213. https://doi.org/10.1039/D2NR06682C
Support-facet-dependent morphology of small Pt particles on ceria
Eliasson, H., Niu, Y., Palmer, R. E., Grönbeck, H., & Erni, R. (2023). Support-facet-dependent morphology of small Pt particles on ceria. Nanoscale, 15(47), 18945-19392. https://doi.org/10.1039/d3nr04701f
CVD of MoS<sub>2</sub> single layer flakes using Na<sub>2</sub>MoO<sub>4</sub> - impact of oxygen and temperature-time-profile
Kalt, R. A., Arcifa, A., Wäckerlin, C., & Stemmer, A. (2023). CVD of MoS2 single layer flakes using Na2MoO4 - impact of oxygen and temperature-time-profile. Nanoscale, 15(46), 18871-18882. https://doi.org/10.1039/d3nr03907b
Biochemical transformations of inorganic nanomedicines in buffers, cell cultures and organisms
Neuer, A. L., Herrmann, I. K., & Gogos, A. (2023). Biochemical transformations of inorganic nanomedicines in buffers, cell cultures and organisms. Nanoscale, 15, 18139-18155. https://doi.org/10.1039/d3nr03415a
Nanocellulose aerogels as 3D amyloid templates
Sinha, A., Kummer, N., Wu, T., De France, K. J., Pinotsi, D., Thoma, J. L., … Nyström, G. (2023). Nanocellulose aerogels as 3D amyloid templates. Nanoscale, 15, 17785-17792. https://doi.org/10.1039/d3nr02109b
From metal nanowires to ultrathin crystalline ALD nanotubes: process development and mechanism revealed by <em>in situ</em> TEM heating experiments
Vogl, L. M., Schweizer, P., Pethö, L., Sharma, A., Michler, J., & Utke, I. (2023). From metal nanowires to ultrathin crystalline ALD nanotubes: process development and mechanism revealed by in situ TEM heating experiments. Nanoscale, 15(21), 9477-9483. https://doi.org/10.1039/d3nr01185b
Novel electrospun chitosan/PEO membranes for more predictive nanoparticle transport studies at biological barriers
Furer, L. A., Díaz Abad, Á., Manser, P., Hannig, Y., Schuerle, S., Fortunato, G., & Buerki-Thurnherr, T. (2022). Novel electrospun chitosan/PEO membranes for more predictive nanoparticle transport studies at biological barriers. Nanoscale, 14(33), 12136-12152. https://doi.org/10.1039/d2nr01742c
Redox-controlled conductance of polyoxometalate molecular junctions
Huez, C., Guérin, D., Lenfant, S., Volatron, F., Calame, M., Perrin, M. L., … Vuillaume, D. (2022). Redox-controlled conductance of polyoxometalate molecular junctions. Nanoscale, 37(14), 13790-13800. https://doi.org/10.1039/D2NR03457C
Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles
Minelli, C., Wywijas, M., Bartczak, D., Cuello-Nuñez, S., Goenaga Infante, H., Deumer, J., … Shard, A. G. (2022). Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles. Nanoscale, 14(12), 4690-4704. https://doi.org/10.1039/D1NR07775A
Particle interactions and their effect on magnetic particle spectroscopy and imaging
Moor, L., Scheibler, S., Gerken, L., Scheffler, K., Thieben, F., Knopp, T., … Starsich, F. H. L. (2022). Particle interactions and their effect on magnetic particle spectroscopy and imaging. Nanoscale, 14(19), 7163-7173. https://doi.org/10.1039/d1nr08402j
Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions
Parida, D., Bakkali-Hassani, C., Lebraud, E., Schatz, C., Grelier, S., Taton, D., & Vignolle, J. (2022). Tuning the activity and selectivity of polymerised ionic liquid-stabilised ruthenium nanoparticles through anion exchange reactions. Nanoscale, 14(12), 4635-4643. https://doi.org/10.1039/D1NR07628K
Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages
Matter, M. T., Doppegieter, M., Gogos, A., Keevend, K., Ren, Q., & Herrmann, I. K. (2021). Inorganic nanohybrids combat antibiotic-resistant bacteria hiding within human macrophages. Nanoscale, 13(17), 8224-8234. https://doi.org/10.1039/d0nr08285f
Synthesis and characterization of [7]triangulene
Mishra, S., Xu, K., Eimre, K., Komber, H., Ma, J., Pignedoli, C. A., … Ruffieux, P. (2021). Synthesis and characterization of [7]triangulene. Nanoscale, 13(3), 1624-1628. https://doi.org/10.1039/D0NR08181G
Polysaccharide-reinforced amyloid fibril hydrogels and aerogels
Usuelli, M., Germerdonk, T., Cao, Y., Peydayesh, M., Bagnani, M., Handschin, S., … Mezzenga, R. (2021). Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. Nanoscale, 13(29), 12534-12545. https://doi.org/10.1039/d1nr03133c
Hydrogen bonded trimesic acid networks on Cu(111) reveal how basic chemical properties are imprinted in HR-AFM images
Zahl, P., Yakutovich, A. V., Ventura-Macías, E., Carracedo-Cosme, J., Romero-Muñiz, C., Pou, P., … Pérez, R. (2021). Hydrogen bonded trimesic acid networks on Cu(111) reveal how basic chemical properties are imprinted in HR-AFM images. Nanoscale, 13(44), 18473-18482. https://doi.org/10.1039/d1nr04471k
Structure-property relationships of cellulose nanofibril hydro- and aerogels and their building blocks
Arcari, M., Axelrod, R., Adamcik, J., Handschin, S., Sánchez-Ferrer, A., Mezzenga, R., & Nyström, G. (2020). Structure-property relationships of cellulose nanofibril hydro- and aerogels and their building blocks. Nanoscale, 12(21), 11638-11646. https://doi.org/10.1039/d0nr01362e
Imaging and quantification of charged domain walls in BiFeO&lt;sub&gt;3&lt;/sub&gt;
Campanini, M., Gradauskaite, E., Trassin, M., Yi, D., Yu, P., Ramesh, R., … Rossell, M. D. (2020). Imaging and quantification of charged domain walls in BiFeO3. Nanoscale, 12(16), 9186-9193. https://doi.org/10.1039/D0NR01258K
 

Pages