| Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance
Gallop, N. P., Maslennikov, D. R., Mondal, N., Goetz, K. P., Dai, Z., Schankler, A. M., … Bakulin, A. A. (2024). Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance. Nature Materials, 23, 88-94. https://doi.org/10.1038/s41563-023-01723-w |
| Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics
Gradauskaite, E., Meier, Q. N., Gray, N., Sarott, M. F., Scharsach, T., Campanini, M., … Trassin, M. (2023). Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. Nature Materials, 22, 1492-1498. https://doi.org/10.1038/s41563-023-01674-2 |
| Exciton-assisted electron tunnelling in van der Waals heterostructures
Wang, L., Papadopoulos, S., Iyikanat, F., Zhang, J., Huang, J., Taniguchi, T., … Novotny, L. (2023). Exciton-assisted electron tunnelling in van der Waals heterostructures. Nature Materials, 22, 1094-1099. https://doi.org/10.1038/s41563-023-01556-7 |
| Locking exciton fine-structure splitting
Rainò, G., & Kovalenko, M. V. (2022). Locking exciton fine-structure splitting. Nature Materials, 21, 1219-1220. https://doi.org/10.1038/s41563-022-01372-5 |
| Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys
Sala, G., Lambert, C. H., Finizio, S., Raposo, V., Krizakova, V., Krishnaswamy, G., … Gambardella, P. (2022). Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys. Nature Materials, 21, 640-646. https://doi.org/10.1038/s41563-022-01248-8 |
| The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state
Tamarat, P., Bodnarchuk, M. I., Trebbia, J. B., Erni, R., Kovalenko, M. V., Even, J., & Lounis, B. (2019). The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nature Materials, 18(7), 717-724. https://doi.org/10.1038/s41563-019-0364-x |
| High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites
Yakunin, S., Benin, B. M., Shynkarenko, Y., Nazarenko, O., Bodnarchuk, M. I., Dirin, D. N., … Kovalenko, M. V. (2019). High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nature Materials, 18(8), 846-852. https://doi.org/10.1038/s41563-019-0416-2 |
| Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
Akkerman, Q. A., Rainò, G., Kovalenko, M. V., & Manna, L. (2018). Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 17, 394-405. https://doi.org/10.1038/s41563-018-0018-4 |
| Grown with the wind
Passerone, D. (2018). Grown with the wind. Nature Materials, 17(4), 296-297. https://doi.org/10.1038/s41563-018-0042-4 |
| Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
Fabbri, E., Nachtegaal, M., Binninger, T., Cheng, X., Kim, B. J., Durst, J., … Schmidt, T. J. (2017). Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 16(9), 925-931. https://doi.org/10.1038/nmat4938 |
| Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots
Bertolotti, F., Dirin, D. N., Ibáñez, M., Krumeich, F., Cervellino, A., Frison, R., … Masciocchi, N. (2016). Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. Nature Materials, 15, 987-994. https://doi.org/10.1038/nmat4661 |
| Nanoscale phase separation in perovskites revisited
Erni, R., Abakumov, A. M., Rossell, M. D. R., Batuk, D., Tsirlin, A. A., Nénert, G., & Van Tendeloo, G. (2014). Nanoscale phase separation in perovskites revisited. Nature Materials, 13, 216-217. https://doi.org/10.1038/nmat3865 |
| <I>In situ</I> micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone
Schwiedrzik, J., Raghavan, R., Bürki, A., LeNader, V., Wolfram, U., Michler, J., & Zysset, P. (2014). In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nature Materials, 13, 740-747. https://doi.org/10.1038/nmat3959 |
| Potassium-induced surface modification of Cu(In,Ga)Se<SUB>2</SUB> thin films for high-efficiency solar cells
Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., … Tiwari, A. N. (2013). Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107-1111. https://doi.org/10.1038/nmat3789 |
| Highly efficient Cu(In,Ga)Se<SUB>2</SUB> solar cells grown on flexible polymer films
Chirilǎ, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A. R., … Tiwari, A. N. (2011). Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials, 10(11), 857-861. https://doi.org/10.1038/nmat3122 |