Active Filters

  • (-) Journal = Nature Materials
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance
Gallop, N. P., Maslennikov, D. R., Mondal, N., Goetz, K. P., Dai, Z., Schankler, A. M., … Bakulin, A. A. (2024). Ultrafast vibrational control of organohalide perovskite optoelectronic devices using vibrationally promoted electronic resonance. Nature Materials, 23, 88-94. https://doi.org/10.1038/s41563-023-01723-w
Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics
Gradauskaite, E., Meier, Q. N., Gray, N., Sarott, M. F., Scharsach, T., Campanini, M., … Trassin, M. (2023). Defeating depolarizing fields with artificial flux closure in ultrathin ferroelectrics. Nature Materials, 22, 1492-1498. https://doi.org/10.1038/s41563-023-01674-2
Exciton-assisted electron tunnelling in van der Waals heterostructures
Wang, L., Papadopoulos, S., Iyikanat, F., Zhang, J., Huang, J., Taniguchi, T., … Novotny, L. (2023). Exciton-assisted electron tunnelling in van der Waals heterostructures. Nature Materials, 22, 1094-1099. https://doi.org/10.1038/s41563-023-01556-7
Locking exciton fine-structure splitting
Rainò, G., & Kovalenko, M. V. (2022). Locking exciton fine-structure splitting. Nature Materials, 21, 1219-1220. https://doi.org/10.1038/s41563-022-01372-5
Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys
Sala, G., Lambert, C. H., Finizio, S., Raposo, V., Krizakova, V., Krishnaswamy, G., … Gambardella, P. (2022). Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys. Nature Materials, 21, 640-646. https://doi.org/10.1038/s41563-022-01248-8
The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state
Tamarat, P., Bodnarchuk, M. I., Trebbia, J. B., Erni, R., Kovalenko, M. V., Even, J., & Lounis, B. (2019). The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nature Materials, 18(7), 717-724. https://doi.org/10.1038/s41563-019-0364-x
High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites
Yakunin, S., Benin, B. M., Shynkarenko, Y., Nazarenko, O., Bodnarchuk, M. I., Dirin, D. N., … Kovalenko, M. V. (2019). High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites. Nature Materials, 18(8), 846-852. https://doi.org/10.1038/s41563-019-0416-2
Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
Akkerman, Q. A., Rainò, G., Kovalenko, M. V., & Manna, L. (2018). Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 17, 394-405. https://doi.org/10.1038/s41563-018-0018-4
Grown with the wind
Passerone, D. (2018). Grown with the wind. Nature Materials, 17(4), 296-297. https://doi.org/10.1038/s41563-018-0042-4
Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting
Fabbri, E., Nachtegaal, M., Binninger, T., Cheng, X., Kim, B. J., Durst, J., … Schmidt, T. J. (2017). Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nature Materials, 16(9), 925-931. https://doi.org/10.1038/nmat4938
Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots
Bertolotti, F., Dirin, D. N., Ibáñez, M., Krumeich, F., Cervellino, A., Frison, R., … Masciocchi, N. (2016). Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots. Nature Materials, 15, 987-994. https://doi.org/10.1038/nmat4661
Nanoscale phase separation in perovskites revisited
Erni, R., Abakumov, A. M., Rossell, M. D. R., Batuk, D., Tsirlin, A. A., Nénert, G., & Van Tendeloo, G. (2014). Nanoscale phase separation in perovskites revisited. Nature Materials, 13, 216-217. https://doi.org/10.1038/nmat3865
<I>In situ</I> micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone
Schwiedrzik, J., Raghavan, R., Bürki, A., LeNader, V., Wolfram, U., Michler, J., & Zysset, P. (2014). In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone. Nature Materials, 13, 740-747. https://doi.org/10.1038/nmat3959
Potassium-induced surface modification of Cu(In,Ga)Se<SUB>2</SUB> thin films for high-efficiency solar cells
Chirilă, A., Reinhard, P., Pianezzi, F., Bloesch, P., Uhl, A. R., Fella, C., … Tiwari, A. N. (2013). Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. Nature Materials, 12(12), 1107-1111. https://doi.org/10.1038/nmat3789
Highly efficient Cu(In,Ga)Se<SUB>2</SUB> solar cells grown on flexible polymer films
Chirilǎ, A., Buecheler, S., Pianezzi, F., Bloesch, P., Gretener, C., Uhl, A. R., … Tiwari, A. N. (2011). Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nature Materials, 10(11), 857-861. https://doi.org/10.1038/nmat3122