Active Filters

  • (-) Journal = Physical Chemistry Chemical Physics
Search Results 1 - 20 of 66

Pages

  • RSS Feed
Select Page
Specific ion effects control the thermoelastic behavior of nanolayered materials: the case of crystalline alkali-silica reaction products
Honorio, T., Chemgne Tamouya, O. M., & Shi, Z. (2020). Specific ion effects control the thermoelastic behavior of nanolayered materials: the case of crystalline alkali-silica reaction products. Physical Chemistry Chemical Physics, 22(47), 27800-27810. https://doi.org/10.1039/D0CP04955G
Kinetic modelling of intraband carrier relaxation in bulk and nanocrystalline lead-halide perovskites
Hopper, T. R., Jeong, A., Gorodetsky, A. A., Krieg, F., Bodnarchuk, M. I., Huang, X., … Bakulin, A. A. (2020). Kinetic modelling of intraband carrier relaxation in bulk and nanocrystalline lead-halide perovskites. Physical Chemistry Chemical Physics, 22(31), 17605-17611. https://doi.org/10.1039/d0cp01599g
Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy
Ibaceta-Jaña, J., Muydinov, R., Rosado, P., Mirhosseini, H., Chugh, M., Nazarenko, O., … Hoffmann, A. (2020). Vibrational dynamics in lead halide hybrid perovskites investigated by Raman spectroscopy. Physical Chemistry Chemical Physics, 22(10), 5604-5614. https://doi.org/10.1039/c9cp06568g
Single-molecule functionality in electronic components based on orbital resonances
Perrin, M. L., Eelkema, R., Thijssen, J., Grozema, F. C., & Van Der Zant, H. S. J. (2020). Single-molecule functionality in electronic components based on orbital resonances. Physical Chemistry Chemical Physics, 22(23), 12849-12866. https://doi.org/10.1039/d0cp01448f
Hydrogen in methanol catalysts by neutron imaging
Terreni, J., Billeter, E., Sambalova, O., Liu, X., Trottmann, M., Sterzi, A., … Borgschulte, A. (2020). Hydrogen in methanol catalysts by neutron imaging. Physical Chemistry Chemical Physics, 22(40), 22979-22988. https://doi.org/10.1039/d0cp03414b
The reaction mechanism of the azide-alkyne Huisgen cycloaddition
Danese, M., Bon, M., Piccini, G. M., & Passerone, D. (2019). The reaction mechanism of the azide-alkyne Huisgen cycloaddition. Physical Chemistry Chemical Physics, 21(35), 19281-19287. https://doi.org/10.1039/C9CP02386K
Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes with hydrocarbons
Hegemann, D., Nisol, B., Gaiser, S., Watson, S., & Wertheimer, M. R. (2019). Energy conversion efficiency in low- and atmospheric-pressure plasma polymerization processes with hydrocarbons. Physical Chemistry Chemical Physics, 21, 8698-8708. https://doi.org/10.1039/C9CP01567A
Cyanine platelet single crystals: growth, crystal structure and optical spectra
Leclaire, N. A., Li, M., Véron, A. C., Neels, A., Heier, J., Reimers, J. R., & Nüesch, F. A. (2018). Cyanine platelet single crystals: growth, crystal structure and optical spectra. Physical Chemistry Chemical Physics, 20(46), 29166-29173. https://doi.org/10.1039/C8CP06034G
Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and <i>in situ</i> analysis
Oldenburg, F. J., Bon, M., Perego, D., Polino, D., Laino, T., Gubler, L., & Schmidt, T. J. (2018). Revealing the role of phosphoric acid in all-vanadium redox flow batteries with DFT calculations and in situ analysis. Physical Chemistry Chemical Physics, 20(36), 23664-23673. https://doi.org/10.1039/c8cp04517h
Formation of highly ordered liquid crystalline coatings – an <i>in situ</i> GISAXS study
Salentinig, S., Zabara, M., Parisse, P., & Amenitsch, H. (2018). Formation of highly ordered liquid crystalline coatings – an in situ GISAXS study. Physical Chemistry Chemical Physics, 20(34), 21903-21909. https://doi.org/10.1039/C8CP03205J
Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides
Shao, X., Bor, G., Al-Hosayni, S., Salentinig, S., & Yaghmur, A. (2018). Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. Physical Chemistry Chemical Physics, 20(37), 23928-23941. https://doi.org/10.1039/C8CP04256J
Shifted equilibria of organic acids and bases in the aqueous surface region
Werner, J., Persson, I., Björneholm, O., Kawecki, D., Saak, C. M., Walz, M. M., … Prisle, N. L. (2018). Shifted equilibria of organic acids and bases in the aqueous surface region. Physical Chemistry Chemical Physics, 20(36), 23281-23293. https://doi.org/10.1039/c8cp01898g
Collective dehydration of ions in nano-pores
Heuberger, M. P., Zachariah, Z., Spencer, N. D., & Espinosa-Marzal, R. M. (2017). Collective dehydration of ions in nano-pores. Physical Chemistry Chemical Physics, 19(21), 13462-13468. https://doi.org/10.1039/C7CP01439B
Design of an efficient coherent multi-site single-molecule rectifier
Perrin, M. L., Doelman, M., Eelkema, R., & van der Zant, H. S. J. (2017). Design of an efficient coherent multi-site single-molecule rectifier. Physical Chemistry Chemical Physics, 19(43), 29187-29194. https://doi.org/10.1039/c7cp04456a
Voltage dependent admittance spectroscopy for the detection of near interface defect states for thin film solar cells
Weiss, T. P., Nishiwaki, S., Bissig, B., Buecheler, S., & Tiwari, A. N. (2017). Voltage dependent admittance spectroscopy for the detection of near interface defect states for thin film solar cells. Physical Chemistry Chemical Physics, 19(45), 30410-30417. https://doi.org/10.1039/C7CP05236G
Controllable decomposition of Ca(BH<sub>4</sub>)<sub>2</sub> for reversible hydrogen storage
Yan, Y., Rentsch, D., & Remhof, A. (2017). Controllable decomposition of Ca(BH4)2 for reversible hydrogen storage. Physical Chemistry Chemical Physics, 19(11), 7788-7792. https://doi.org/10.1039/C7CP00448F
Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging
Borgschulte, A., Delmelle, R., Duarte, R. B., Heel, A., Boillat, P., & Lehmann, E. (2016). Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging. Physical Chemistry Chemical Physics, 18(26), 17217-17223. https://doi.org/10.1039/C5CP07686B
Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films
Just, J., Sutter-Fella, C. M., Lützenkirchen-Hecht, D., Frahm, R., Schorr, S., & Unold, T. (2016). Secondary phases and their influence on the composition of the kesterite phase in CZTS and CZTSe thin films. Physical Chemistry Chemical Physics, 18(23), 15988-15994. https://doi.org/10.1039/c6cp00178e
<I>In situ</I> characterization of the decomposition behavior of Mg(BH<SUB>4</SUB>)<SUB>2</SUB> by X-ray Raman scattering spectroscopy
Sahle, C. J., Kujawski, S., Remhof, A., Yan, Y., Stadie, N. P., Al-Zein, A., … Sternemann, C. (2016). In situ characterization of the decomposition behavior of Mg(BH4)2 by X-ray Raman scattering spectroscopy. Physical Chemistry Chemical Physics, 18(7), 5397-5403. https://doi.org/10.1039/c5cp06571b
Formation of CaB<SUB>6</SUB> in the thermal decomposition of the hydrogen storage material Ca(BH<SUB>4</SUB>)<SUB>2</SUB>
Sahle, C. J., Sternemann, C., Giacobbe, C., Yan, Y., Weis, C., Harder, M., … Remhof, A. (2016). Formation of CaB6 in the thermal decomposition of the hydrogen storage material Ca(BH4)2. Physical Chemistry Chemical Physics, 18(29), 19866-19872. https://doi.org/10.1039/c6cp02495e
 

Pages