Active Filters

  • (-) Journal = Physical Review E
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures
Qin, F., Zhao, J., Kang, Q., Brunschwiler, T., Derome, D., & Carmeliet, J. (2021). Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures. Physical Review E, 103(2), 023311 (15 pp.). https://doi.org/10.1103/PhysRevE.103.023311
Link between packing morphology and the distribution of contact forces and stresses in packings of highly nonconvex particles
Conzelmann, N. A., Penn, A., Partl, M. N., Clemens, F. J., Poulikakos, L. D., & Müller, C. R. (2020). Link between packing morphology and the distribution of contact forces and stresses in packings of highly nonconvex particles. Physical Review E, 102(6), 062902 (13 pp.). https://doi.org/10.1103/PhysRevE.102.062902
Geometry-induced nonequilibrium phase transition in sandpiles
Najafi, M. N., Cheraghalizadeh, J., Luković, M., & Herrmann, H. J. (2020). Geometry-induced nonequilibrium phase transition in sandpiles. Physical Review E, 101(3), 032116 (8 pp.). https://doi.org/10.1103/PhysRevE.101.032116
Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures
Qin, F., Mazloomi Moqaddam, A., Del Carro, L., Kang, Q., Brunschwiler, T., Derome, D., & Carmeliet, J. (2019). Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. Physical Review E, 99(5), 053306 (11 pp.). https://doi.org/10.1103/PhysRevE.99.053306
Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation
Lemrich, L., Carmeliet, J., Johnson, P. A., Guyer, R., & Jia, X. (2017). Dynamic induced softening in frictional granular materials investigated by discrete-element-method simulation. Physical Review E, 96(6), 062901 (8 pp.). https://doi.org/10.1103/PhysRevE.96.062901
Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers
Xiao, R., Ghazaryan, G., Tervoort, T. A., & Nguyen, T. D. (2017). Modeling energy storage and structural evolution during finite viscoplastic deformation of glassy polymers. Physical Review E, 95(6), 063001 (13 pp.). https://doi.org/10.1103/PhysRevE.95.063001
Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations
Kulasinski, K., Guyer, R., Derome, D., & Carmeliet, J. (2015). Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations. Physical Review E, 92(2), 022605 (10 pp.). https://doi.org/10.1103/PhysRevE.92.022605
Three-dimensional discrete element modeling of triggered slip in sheared granular media
Ferdowsi, B., Griffa, M., Guyer, R. A., Johnson, P. A., Marone, C., & Carmeliet, J. (2014). Three-dimensional discrete element modeling of triggered slip in sheared granular media. Physical Review E, 89, 042204 (12 pp.). https://doi.org/10.1103/PhysRevE.89.042204
Influence of vibration amplitude on dynamic triggering of slip in sheared granular layers
Griffa, M., Ferdowsi, B., Guyer, R. A., Daub, E. G., Johnson, P. A., Marone, C., & Carmeliet, J. (2013). Influence of vibration amplitude on dynamic triggering of slip in sheared granular layers. Physical Review E, 87(1), 012205 (12 pp.). https://doi.org/10.1103/PhysRevE.87.012205
Hysteresis in modeling of poroelastic systems: quasistatic equilibrium
Guyer, R. A., Kim, H. A., Derome, D., Carmeliet, J., & TenCate, J. (2011). Hysteresis in modeling of poroelastic systems: quasistatic equilibrium. Physical Review E, 83(6), 061408 (13 pp.). https://doi.org/10.1103/PhysRevE.83.061408
Inverse method for the determination of a mathematical expression for the anisotropy of the solid-liquid interfacial energy in Al-Zn-Si alloys
Niederberger, C., Michler, J., & Jacot, A. (2006). Inverse method for the determination of a mathematical expression for the anisotropy of the solid-liquid interfacial energy in Al-Zn-Si alloys. Physical Review E, 74(2), 021604 (8 pp.). https://doi.org/10.1103/PhysRevE.74.021604
Difference-quotient turbulence model: analytical solutions for the core region of plane Poiseuille flow
Egolf, P. W., & Weiss, D. A. (2000). Difference-quotient turbulence model: analytical solutions for the core region of plane Poiseuille flow. Physical Review E, 62(1), 553-563. https://doi.org/10.1103/PhysRevE.62.553
Difference-quotient turbulence model: the axisymmetric isothermal jet
Egolf, P. W., & Weiss, D. A. (1998). Difference-quotient turbulence model: the axisymmetric isothermal jet. Physical Review E, 58(1), 459-470. https://doi.org/10.1103/PhysRevE.58.459
Difference-quotient turbulence model: a generalization of Prandtl's mixing-length theory
Egolf, P. W. (1994). Difference-quotient turbulence model: a generalization of Prandtl's mixing-length theory. Physical Review E, 49(2), 1260-1268. https://doi.org/10.1103/PhysRevE.49.1260