Active Filters

  • (-) Journal = Plasma Processes and Polymers
  • (-) Journal = Plasma Processes and Polymers
Search Results 1 - 20 of 39
Select Page
Insight into peculiar adhesion of cells to plasma‐chemically prepared multifunctional "amino‐glue" surfaces
Buchtelová, M., Blahová, L., Nečas, D., Křížková, P., Bartošíková, J., Medalová, J., … Zajíčková, L. (2023). Insight into peculiar adhesion of cells to plasma‐chemically prepared multifunctional "amino‐glue" surfaces. Plasma Processes and Polymers, 20(6), e2200157 (15 pp.). https://doi.org/10.1002/ppap.202200157
Plasma activation mechanisms governed by specific energy input: potential and perspectives
Hegemann, D. (2023). Plasma activation mechanisms governed by specific energy input: potential and perspectives. Plasma Processes and Polymers, 20(5), 2300010 (21 pp.). https://doi.org/10.1002/ppap.202300010
Surface modification of recycled polymers in comparison to virgin polymers using Ar/O<sub>2</sub> plasma etching
Amberg, M., Höhener, M., Rupper, P., Hanselmann, B., Hufenus, R., Lehner, S., … Hegemann, D. (2022). Surface modification of recycled polymers in comparison to virgin polymers using Ar/O2 plasma etching. Plasma Processes and Polymers, 19(12), 2200068 (14 pp.). https://doi.org/10.1002/ppap.202200068
Nanoporous SiOx plasma polymer films as carrier for liquid‐infused surfaces
Gergs, T., Monti, C., Gaiser, S., Amberg, M., Schütz, U., Mussenbrock, T., … Hegemann, D. (2022). Nanoporous SiOx plasma polymer films as carrier for liquid‐infused surfaces. Plasma Processes and Polymers, 19(8), e2200049 (14 pp.). https://doi.org/10.1002/ppap.202200049
Plasma-deposited AgOx-doped TiO<em>x</em> coatings enable rapid antibacterial activity based on ROS generation
Hegemann, D., Hanselmann, B., Zuber, F., Pan, F., Gaiser, S., Rupper, P., … Ren, Q. (2022). Plasma-deposited AgOx-doped TiOx coatings enable rapid antibacterial activity based on ROS generation. Plasma Processes and Polymers, 19(7), e2100246 (17 pp.). https://doi.org/10.1002/ppap.202100246
Cost structure and resource efficiency of plasma processes
Oehr, C., Hegemann, D., Liehr, M., & Wohlfart, P. (2022). Cost structure and resource efficiency of plasma processes. Plasma Processes and Polymers, 19(10), 2200022 (11 pp.). https://doi.org/10.1002/ppap.202200022
Plasma polymerization of hexamethyldisiloxane: revisited
Hegemann, D., Bülbül, E., Hanselmann, B., Schütz, U., Amberg, M., & Gaiser, S. (2021). Plasma polymerization of hexamethyldisiloxane: revisited. Plasma Processes and Polymers, 18(2), 2000176 (25 pp.). https://doi.org/10.1002/ppap.202000176
Unique combination of spatial and temporal control of maleic anhydride plasma polymerization
Jebali, S., Airoudj, A., Ferreira, I., Hegemann, D., Roucoules, V., & Gall, F. B. L. (2021). Unique combination of spatial and temporal control of maleic anhydride plasma polymerization. Plasma Processes and Polymers, 18(8), e2000244 (12 pp.). https://doi.org/10.1002/ppap.202000244
Top‐down approach to attach liquid polyethylene glycol to solid surfaces by plasma interaction
Gaiser, S., Schütz, U., & Hegemann, D. (2020). Top‐down approach to attach liquid polyethylene glycol to solid surfaces by plasma interaction. Plasma Processes and Polymers, 17(2), e1900211 (7 pp.). https://doi.org/10.1002/ppap.201900211
Large-area atmospheric pressure dielectric barrier discharges in Ar–HMDSO mixtures: experiments and fluid modelling
Loffhagen, D., Becker, M. M., Hegemann, D., Nisol, B., Watson, S., Wertheimer, M. R., & Klages, C. P. (2020). Large-area atmospheric pressure dielectric barrier discharges in Ar–HMDSO mixtures: experiments and fluid modelling. Plasma Processes and Polymers, 17(2), e1900169 (11 pp.). https://doi.org/10.1002/ppap.201900169
White paper on the future of plasma science for optics and glass
Šimek, M., Černák, M., Kylián, O., Foest, R., Hegemann, D., & Martini, R. (2019). White paper on the future of plasma science for optics and glass. Plasma Processes and Polymers, 16(1), e1700250 (23 pp.). https://doi.org/10.1002/ppap.201700250
Stable, nanometer-thick oxygen-containing plasma polymer films suited for enhanced biosensing
Hegemann, D., Indutnyi, I., Zajíčková, L., Makhneva, E., Zdeněk, F., Ushenin, Y., & Vandenbossche, M. (2018). Stable, nanometer-thick oxygen-containing plasma polymer films suited for enhanced biosensing. Plasma Processes and Polymers, 15(11), e1800090 (9 pp.). https://doi.org/10.1002/ppap.201800090
Formation of lateral chemical gradients in plasma polymer films shielded by an inclined mask
Vandenbossche, M., Petit, L., Mathon-Lagresle, J., Spano, F., Rupper, P., Bernard, L., & Hegemann, D. (2018). Formation of lateral chemical gradients in plasma polymer films shielded by an inclined mask. Plasma Processes and Polymers, 15(4), e1700185 (10 pp.). https://doi.org/10.1002/ppap.201700185
Deposition of functional plasma polymers influenced by reactor geometry in capacitively coupled discharges
Hegemann, D., Michlíček, M., Blanchard, N. E., Schütz, U., Lohmann, D., Vandenbossche, M., … Drábik, M. (2016). Deposition of functional plasma polymers influenced by reactor geometry in capacitively coupled discharges. Plasma Processes and Polymers, 13(2), 279-286. https://doi.org/10.1002/ppap.201500078
Energy conversion efficiency in plasma polymerization – a comparison of low- and atmospheric-pressure processes
Hegemann, D., Nisol, B., Watson, S., & Wertheimer, M. R. (2016). Energy conversion efficiency in plasma polymerization – a comparison of low- and atmospheric-pressure processes. Plasma Processes and Polymers, 13(8), 834-842. https://doi.org/10.1002/ppap.201500224
Reduced protein adsorption on plasma polymer films comprising hydrophobic/hydrophilic vertical chemical gradients
Hegemann, D., Blanchard, N. E., & Heuberger, M. (2016). Reduced protein adsorption on plasma polymer films comprising hydrophobic/hydrophilic vertical chemical gradients. Plasma Processes and Polymers, 13(5), 494-498. https://doi.org/10.1002/ppap.201500228
Densification and hydration of HMDSO plasma polymers
Blanchard, N. E., Hanselmann, B., Drosten, J., Heuberger, M., & Hegemann, D. (2015). Densification and hydration of HMDSO plasma polymers. Plasma Processes and Polymers, 12(1), 32-41. https://doi.org/10.1002/ppap.201400118
Deposition of plasma polymer films from acetylene and water vapor
Guimond, S., Hanselmann, B., Hossain, M., Salimova, V., & Hegemann, D. (2015). Deposition of plasma polymer films from acetylene and water vapor. Plasma Processes and Polymers, 12(4), 328-335. https://doi.org/10.1002/ppap.201400164
Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers
Kedroňová, E., Zajíčková, L., Hegemann, D., Klíma, M., Michlíček, M., & Manakhov, A. (2015). Plasma enhanced CVD of organosilicon thin films on electrospun polymer nanofibers. Plasma Processes and Polymers, 12(11), 1231-1243. https://doi.org/10.1002/ppap.201400235
Influence of deposition conditions on structure and aging of C:H:O plasma polymer films prepared from acetone/CO<SUB>2</SUB> mixtures
Drabik, M., Kousal, J., Celma, C., Rupper, P., Biederman, H., & Hegemann, D. (2014). Influence of deposition conditions on structure and aging of C:H:O plasma polymer films prepared from acetone/CO2 mixtures. Plasma Processes and Polymers, 11(5), 496-508. https://doi.org/10.1002/ppap.201400005