Active Filters

  • (-) Journal = Review of Scientific Instruments
Search Results 1 - 20 of 22
Select Page
Achieving <em>μ</em>eV tunneling resolution in an <em>in-operando</em> scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research
Schwenk, J., Kim, S., Berwanger, J., Ghahari, F., Walkup, D., Slot, M. R., … Stroscio, J. A. (2020). Achieving μeV tunneling resolution in an in-operando scanning tunneling microscopy, atomic force microscopy, and magnetotransport system for quantum materials research. Review of Scientific Instruments, 91(7), 071101 (23 pp.). https://doi.org/10.1063/5.0005320
A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the <em>operando</em> study of the heterogeneously catalyzed CO<sub>2</sub> hydrogenation over transition metal-based c
Zhao, K., Zhang, J., Luo, W., Li, M., Moioli, E., Spodaryk, M., & Züttel, A. (2020). A combined diffuse reflectance infrared Fourier transform spectroscopy-mass spectroscopy-gas chromatography for the operando study of the heterogeneously catalyzed CO2 hydrogenation over transition metal-based catalysts. Review of Scientific Instruments, 91(7), 074102 (9 pp.). https://doi.org/10.1063/1.5144497
Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C
Conte, M., Mohanty, G., Schwiedrzik, J. J., Wheeler, J. M., Bellaton, B., Michler, J., & Randall, N. X. (2019). Novel high temperature vacuum nanoindentation system with active surface referencing and non-contact heating for measurements up to 800 °C. Review of Scientific Instruments, 90(4), 045105 (12 pp.). https://doi.org/10.1063/1.5029873
Laser driving and data processing concept for mobile trace gas sensing: design and implementation
Liu, C., Tuzson, B., Scheidegger, P., Looser, H., Bereiter, B., Graf, M., … Emmenegger, L. (2018). Laser driving and data processing concept for mobile trace gas sensing: design and implementation. Review of Scientific Instruments, 89(6), 065107 (9 pp.). https://doi.org/10.1063/1.5026546
Fast real time and quantitative gas analysis method for the investigation of the CO<sub>2</sub> reduction reaction mechanism
Mutschler, R., Luo, W., Moioli, E., & Züttel, A. (2018). Fast real time and quantitative gas analysis method for the investigation of the CO2 reduction reaction mechanism. Review of Scientific Instruments, 89(11), 114102 (8 pp.). https://doi.org/10.1063/1.5047402
Induction spectrometry using an ultrafast hollow-cored toroidal-coil (HTC) detector
Arbelo, Y., & Bleiner, D. (2017). Induction spectrometry using an ultrafast hollow-cored toroidal-coil (HTC) detector. Review of Scientific Instruments, 88(2), 024710 (7 pp.). https://doi.org/10.1063/1.4975402
<i>In situ</i> flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions
Rothensteiner, M., Jenni, J., Emerich, H., Bonk, A., Vogt, U. F., & van Bokhoven, J. A. (2017). In situ flow cell for combined X-ray absorption spectroscopy, X-ray diffraction, and mass spectrometry at high photon energies under solar thermochemical looping conditions. Review of Scientific Instruments, 88(8), 083116 (11 pp.). https://doi.org/10.1063/1.4994890
Invited article: a round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co<SUB>0.97</SUB>Ni<SUB>0.03</SUB>Sb<SUB>3</SUB>
Alleno, E., Bérardan, D., Byl, C., Candolfi, C., Daou, R., Decourt, R., … Soulier, M. (2015). Invited article: a round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3. Review of Scientific Instruments, 86(1), 11301 (9 pp.). https://doi.org/10.1063/1.4905250
Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation
Delmelle, R., Probst, B., Alberto, R., Züttel, A., Bleiner, D., & Borgschulte, A. (2015). Closing the pressure gap in x-ray photoelectron spectroscopy by membrane hydrogenation. Review of Scientific Instruments, 86(5), 053104 (8 pp.). https://doi.org/10.1063/1.4921353
Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach
Chiarello, G. L., Nachtegaal, M., Marchionni, V., Quaroni, L., & Ferri, D. (2014). Adding diffuse reflectance infrared Fourier transform spectroscopy capability to extended x-ray-absorption fine structure in a new cell to study solid catalysts in combination with a modulation approach. Review of Scientific Instruments, 85(7), 074102 (11 pp.). https://doi.org/10.1063/1.4890668
Elevated temperature, nano-mechanical testing <I>in situ</I> in the scanning electron microscope
Wheeler, J. M., & Michler, J. (2013). Elevated temperature, nano-mechanical testing in situ in the scanning electron microscope. Review of Scientific Instruments, 84(4), 045103 (15 pp.). https://doi.org/10.1063/1.4795829
Invited article: indenter materials for high temperature nanoindentation
Wheeler, J. M., & Michler, J. (2013). Invited article: indenter materials for high temperature nanoindentation. Review of Scientific Instruments, 84(10), 101301 (11 pp.). https://doi.org/10.1063/1.4824710
Invited review article: measurement uncertainty of linear phase-stepping algorithms
Hack, E., & Burke, J. (2011). Invited review article: measurement uncertainty of linear phase-stepping algorithms. Review of Scientific Instruments, 82(6), 061101 (16 pp.). https://doi.org/10.1063/1.3603452
High-pressure and high-temperature x-ray diffraction cell for combined pressure, composition, and temperature measurements of hydrides
Mauron, P., Bielmann, M., Remhof, A., & Züttel, A. (2011). High-pressure and high-temperature x-ray diffraction cell for combined pressure, composition, and temperature measurements of hydrides. Review of Scientific Instruments, 82(6), 065108 (7 pp.). https://doi.org/10.1063/1.3600668
The extended surface forces apparatus. IV. Precision static pressure control
Schurtenberger, E., & Heuberger, M. (2011). The extended surface forces apparatus. IV. Precision static pressure control. Review of Scientific Instruments, 82(10), 103902 (8 pp.). https://doi.org/10.1063/1.3648121
Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor
Sannomiya, T., Balmer, T. E., Hafner, C., Heuberger, M., & Vörös, J. (2010). Optical sensing and determination of complex reflection coefficients of plasmonic structures using transmission interferometric plasmonic sensor. Review of Scientific Instruments, 81(5), 053102 (9 pp.). https://doi.org/10.1063/1.3405912
High-pressure and high-temperature differential scanning calorimeter for combined pressure-concentration-temperature measurements of hydrides
Mauron, P., Bielmann, M., Bissig, V., Remhof, A., & Züttel, A. (2009). High-pressure and high-temperature differential scanning calorimeter for combined pressure-concentration-temperature measurements of hydrides. Review of Scientific Instruments, 80(9), 095113 (6 pp.). https://doi.org/10.1063/1.3233939
A simple method for producing flattened atomic force microscopy tips
Biagioni, P., Farahani, J. N., Mühlschlegel, P., Eisler, H. J., Pohl, D. W., & Hecht, B. (2008). A simple method for producing flattened atomic force microscopy tips. Review of Scientific Instruments, 79(1), 016103 (2 pp.). https://doi.org/10.1063/1.2834875
PolLux: a new facility for soft x-ray spectromicroscopy at the Swiss light source
Raabe, J., Tzvetkov, G., Flechsig, U., Böge, M., Jaggi, A., Sarafimov, B., … Quitmann, C. (2008). PolLux: a new facility for soft x-ray spectromicroscopy at the Swiss light source. Review of Scientific Instruments, 79(11), 113704 (10 pp.). https://doi.org/10.1063/1.3021472
Precision thickness and refractive index imaging of molecular films
Balmer, T. E., & Heuberger, M. (2007). Precision thickness and refractive index imaging of molecular films. Review of Scientific Instruments, 78(9), 093105 (10 pp.). https://doi.org/10.1063/1.2777369