Active Filters

  • (-) Journal = Science Advances
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Enhanced mechanical energy conversion with selectively decayed wood
Sun, J., Guo, H., Schädli, G. N., Tu, K., Schär, S., Schwarze, F. W. M. R., … Burgert, I. (2021). Enhanced mechanical energy conversion with selectively decayed wood. Science Advances, 7(11), eabd9138 (7 pp.). https://doi.org/10.1126/sciadv.abd9138
Rebound of self-lubricating compound drops
Blanken, N., Saleem, M. S., Antonini, C., & Thoraval, M. J. (2020). Rebound of self-lubricating compound drops. Science Advances, 6(11), eaay3499 (11 pp.). https://doi.org/10.1126/sciadv.aay3499
Liquid repellency enhancement through flexible microstructures
Hu, S., Cao, X., Reddyhoff, T., Puhan, D., Vladescu, S. C., Wang, J., … Dini, D. (2020). Liquid repellency enhancement through flexible microstructures. Science Advances, 6(32), eaba9721 (7 pp.). https://doi.org/10.1126/sciadv.aba9721
Complete aggregation pathway of amyloid β (1-40) and (1-42) resolved on an atomically clean interface
Nirmalraj, P. N., List, J., Battacharya, S., Howe, G., Xu, L., Thompson, D., & Mayer, M. (2020). Complete aggregation pathway of amyloid β (1-40) and (1-42) resolved on an atomically clean interface. Science Advances, 6(15), eaaz6014 (12 pp.). https://doi.org/10.1126/sciadv.aaz6014
Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS<sub>2</sub>
Schröter, N. B. M., Robredo, I., Klemenz, S., Kirby, R. J., Krieger, J. A., Pei, D., … Schoop, L. M. (2020). Weyl fermions, Fermi arcs, and minority-spin carriers in ferromagnetic CoS2. Science Advances, 6(51), eabd5000 (8 pp.). https://doi.org/10.1126/sciadv.abd5000
Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures
Grönquist, P., Wood, D., Hassani, M. M., Wittel, F. K., Menges, A., & Rüggeberg, M. (2019). Analysis of hygroscopic self-shaping wood at large scale for curved mass timber structures. Science Advances, 5(9), eaax1311 (7 pp.). https://doi.org/10.1126/sciadv.aax1311
Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration
Li, R., Lin, S., Zhu, M., Deng, Y., Chen, X., Wei, K., … Bian, L. (2019). Synthetic presentation of noncanonical Wnt5a motif promotes mechanosensing-dependent differentiation of stem cells and regeneration. Science Advances, 5(10), eaaw3896 (12 pp.). https://doi.org/10.1126/sciadv.aaw3896
Supramolecular architectures of molecularly thin yet robust free-standing layers
Moradi, M., Opara, N. L., Tulli, L. G., Wäckerlin, C., Dalgarno, S. J., Teat, S. J., … Shahgaldian, P. (2019). Supramolecular architectures of molecularly thin yet robust free-standing layers. Science Advances, 5(2), eaav4489 (7 pp.). https://doi.org/10.1126/sciadv.aav4489
Negative-pressure polymorphs made by heterostructural alloying
Siol, S., Holder, A., Steffes, J., Schelhas, L. T., Stone, K. H., Garten, L., … Zakutayev, A. (2018). Negative-pressure polymorphs made by heterostructural alloying. Science Advances, 4(4), eaaq1442 (7 pp.). https://doi.org/10.1126/sciadv.aaq1442
Stoichiometric control of the density of states in PbS colloidal quantum dot solids
Balazs, D. M., Bijlsma, K. I., Fang, H. H., Dirin, D. N., Döbeli, M., Kovalenko, M. V., & Loi, M. A. (2017). Stoichiometric control of the density of states in PbS colloidal quantum dot solids. Science Advances, 3(9), eaao1558 (7 pp.). https://doi.org/10.1126/sciadv.aao1558
Novel phase diagram behavior and materials design in heterostructural semiconductor alloys
Holder, A. M., Siol, S., Ndione, P. F., Peng, H., Deml, A. M., Matthews, B. E., … Lany, S. (2017). Novel phase diagram behavior and materials design in heterostructural semiconductor alloys. Science Advances, 3(6), e1700270 (7 pp.). https://doi.org/10.1126/sciadv.1700270
Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells
Jagielski, J., Kumar, S., Wang, M., Scullion, D., Lawrence, R., Li, Y. T., … Shih, C. J. (2017). Aggregation-induced emission in lamellar solids of colloidal perovskite quantum wells. Science Advances, 3(12), eaaq0208 (11 pp.). https://doi.org/10.1126/sciadv.aaq0208