Active Filters

  • (-) Keywords = silicon
  • (-) Keywords ≠ polymer brushes
Search Results 1 - 20 of 29
Select Page
Self-assembly of hierarchical Ti<sub>3</sub>C<sub>2</sub>Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes
Cao, D., Ren, M., Xiong, J., Pan, L., Wang, Y., Ji, X., … Zhang, C. (J. ). (2020). Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes. Electrochimica Acta, 348, 136211 (11 pp.). https://doi.org/10.1016/j.electacta.2020.136211
Size-dependent plasticity and activation parameters of lithographically-produced silicon micropillars
Chen, M., Wehrs, J., Sologubenko, A. S., Rabier, J., Michler, J., & Wheeler, J. M. (2020). Size-dependent plasticity and activation parameters of lithographically-produced silicon micropillars. Materials and Design, 189, 108506 (13 pp.). https://doi.org/10.1016/j.matdes.2020.108506
Epitaxial growth of silicon on silicon wafers by direct laser melting
Le Dantec, M., Abdulstaar, M., Leparoux, M., & Hoffmann, P. (2020). Epitaxial growth of silicon on silicon wafers by direct laser melting. Materials, 13(21), 4728 (8 pp.). https://doi.org/10.3390/ma13214728
Corrosion mechanisms of diamond-like carbon coated interlayers & interfaces
Ilić, E. (2019). Corrosion mechanisms of diamond-like carbon coated interlayers & interfaces [Doctoral dissertation]. École Polytechnique Fédérale de Lausanne (EPFL).
Nanoladder cantilevers made from diamond and silicon
Héritier, M., Eichler, A., Pan, Y., Grob, U., Shorubalko, I., Krass, M. D., … Degen, C. L. (2018). Nanoladder cantilevers made from diamond and silicon. Nano Letters, 18(3), 1814-1818. https://doi.org/10.1021/acs.nanolett.7b05035
Fracture of silicon: influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting
Lauener, C. M., Petho, L., Chen, M., Xiao, Y., Michler, J., & Wheeler, J. M. (2018). Fracture of silicon: influence of rate, positioning accuracy, FIB machining, and elevated temperatures on toughness measured by pillar indentation splitting. Materials and Design, 142, 340-349. https://doi.org/10.1016/j.matdes.2018.01.015
Additive manufacturing of semiconductor silicon on silicon using direct laser melting
Le Dantec, M., Abdulstaar, M., Leistner, M., Leparoux, M., & Hoffmann, P. (2018). Additive manufacturing of semiconductor silicon on silicon using direct laser melting. In M. Meboldt & C. Klahn (Eds.), Industrializing additive manufacturing - proceedings of additive manufacturing in products and applications - AMPA2017 (pp. 104-116). https://doi.org/10.1007/978-3-319-66866-6_10
A new push-pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension
Schwiedrzik, J. J., Ast, J., Pethö, L., Maeder, X., & Michler, J. (2018). A new push-pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue and Fracture of Engineering Materials and Structures, 41(5), 991-1001. https://doi.org/10.1111/ffe.12741
A generalized theory explains the anomalous Suns–<I>V</I><SUB>oc</SUB> response of Si heterojunction solar cells
Chavali, R. V. K., Li, J. V., Battaglia, C., De Wolf, S., Lynn Gray, J., & Alam, M. A. (2017). A generalized theory explains the anomalous Suns–Voc response of Si heterojunction solar cells. IEEE Journal of Photovoltaics, 7(1), 169-176. https://doi.org/10.1109/JPHOTOV.2016.2621346
Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE
Skibitzki, O., Prieto, I., Kozak, R., Capellini, G., Zaumseil, P., Arroyo Rojas Dasilva, Y., … Schroeder, T. (2017). Structural and optical characterization of GaAs nano-crystals selectively grown on Si nano-tips by MOVPE. Nanotechnology, 28(13), 135301 (10 pp.). https://doi.org/10.1088/1361-6528/aa5ec1
Wire-sawing processes: parametrical study and modeling
Bidiville, A., Wasmer, K., Van der Meer, M., & Ballif, C. (2015). Wire-sawing processes: parametrical study and modeling. Solar Energy Materials and Solar Cells, 132, 392-402. https://doi.org/10.1016/j.solmat.2014.09.019
Quasi one-dimensional Ag nanostructures on Si(331)–(12 × 1)
Mariotti, N., Didiot, C., Schwier, E. F., Monney, C., Battaglia, C., & Aebi, P. (2015). Quasi one-dimensional Ag nanostructures on Si(331)–(12 × 1). Surface Science, 639, 39-42. https://doi.org/10.1016/j.susc.2015.04.006
Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection
Tao, Y., Navaretti, P., Hauert, R., Grob, U., Poggio, M., & Degen, C. L. (2015). Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection. Nanotechnology, 26, 465501 (9 pp.). https://doi.org/10.1088/0957-4484/26/46/465501
Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network
Zhang, Z., Tingaut, P., Rentsch, D., Zimmermann, T., & Sèbe, G. (2015). Controlled silylation of nanofibrillated cellulose in water: reinforcement of a model polydimethylsiloxane network. ChemSusChem, 8(16), 2681-2690. https://doi.org/10.1002/cssc.201500525
Improved test setup for MEMS mechanical strength investigations and fabrication process qualification
Bandi, T., Maeder, X., Dommann, A., Shea, H., & Neels, A. (2014). Improved test setup for MEMS mechanical strength investigations and fabrication process qualification. In H. R. Shea & R. Ramesham (Eds.), Proceedings of SPIE: Vol. 8975. Reliability, packaging, testing, and characterization of MOEMS/MEMS, nanodevices, and nanomaterials XIII (p. 897509 (7 pp.). https://doi.org/10.1117/12.2044212
Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy
Aguiar, J. A., Reed, B. W., Ramasse, Q. M., Erni, R., & Browning, N. D. (2013). Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy. Ultramicroscopy, 124, 130-138. https://doi.org/10.1016/j.ultramic.2012.08.010
Making MEMS more suited for space: assessing the proton-radiation tolerance of structural materials for microsystems in orbit
Bandi, T., Polido-Gomes, J., Neels, A., Dommann, A., & Shea, H. R. (2013). Making MEMS more suited for space: assessing the proton-radiation tolerance of structural materials for microsystems in orbit. In R. Ramesham & H. R. Shea (Eds.), Proceedings of SPIE: Vol. 8614. Reliability, packaging, testing, and characterization of MOEMS/MEMS and nanodevices XII (p. 86140M (10 pp.). https://doi.org/10.1117/12.2004705
Silicon micropillars: high stress plasticity
Rabier, J., Montagne, A., Wheeler, J. M., Demenet, J. L., Michler, J., & Ghisleni, R. (2013). Silicon micropillars: high stress plasticity. Physica Status Solidi C: Current Topics in Solid State Physics, 10(1), 11-15. https://doi.org/10.1002/pssc.201200546
Electrodeposition of amorphous silicon in non-oxygenated organic solvent
Bechelany, M., Elias, J., Brodard, P., Michler, J., & Philippe, L. (2012). Electrodeposition of amorphous silicon in non-oxygenated organic solvent. Thin Solid Films, 520(6), 1895-1901. https://doi.org/10.1016/j.tsf.2011.09.026
The Si&lt;sub&gt;3&lt;/sub&gt;N&lt;sub&gt;4&lt;/sub&gt;/TiN interface: 6. Si/TiN(001) grown and analyzed &lt;em&gt;in situ&lt;/em&gt; using angle-resolved X-ray photoelectron spectroscopy
Haasch, R. T., Patscheider, J., Hellgren, N., Petrov, I., & Greene, J. E. (2012). The Si3N4/TiN interface: 6. Si/TiN(001) grown and analyzed in situ using angle-resolved X-ray photoelectron spectroscopy. Surface Science Spectra, 19(1), 82-91. https://doi.org/10.1116/11.20121006