Active Filters

  • (-) Keywords = CO2 reduction
Search Results 1 - 12 of 12
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
CO<sub>2</sub> hydrogenation over unsupported Fe-Co nanoalloy catalysts
Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., & Züttel, A. (2020). CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nanomaterials, 10(7), 1360 (12 pp.). https://doi.org/10.3390/nano10071360
Electrochemical reconstruction of ZnO for selective reduction of CO<sub>2</sub> to CO
Luo, W., Zhang, Q., Zhang, J., Moioli, E., Zhao, K., & Züttel, A. (2020). Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Applied Catalysis B: Environmental, 273, 119060 (9 pp.). https://doi.org/10.1016/j.apcatb.2020.119060
Understanding catalysis - a simplified simulation of catalytic reactors for CO<sub>2</sub> reduction
Terreni, J., Borgschulte, A., Hillestad, M., & Patterson, B. D. (2020). Understanding catalysis - a simplified simulation of catalytic reactors for CO2 reduction. ChemEngineering, 4(4), 62 (16 pp.). https://doi.org/10.3390/chemengineering4040062
Hydride formation diminishes CO<sub>2</sub> reduction rate on palladium
Billeter, E., Terreni, J., & Borgschulte, A. (2019). Hydride formation diminishes CO2 reduction rate on palladium. ChemPhysChem, 20, 1382-1391. https://doi.org/10.1002/cphc.201801081
Photonic curing: activation and stabilization of metal membrane catalysts (MMCs) for the electrochemical reduction of CO<sub>2</sub>
Hou, Y., Bolat, S., Bornet, A., Romanyuk, Y. E., Guo, H., Moreno-García, P., … Broekmann, P. (2019). Photonic curing: activation and stabilization of metal membrane catalysts (MMCs) for the electrochemical reduction of CO2. ACS Catalysis, 9(10), 9518-9529. https://doi.org/10.1021/acscatal.9b03664
Sorption-enhanced methanol synthesis
Terreni, J., Trottmann, M., Franken, T., Heel, A., & Borgschulte, A. (2019). Sorption-enhanced methanol synthesis. Energy Technology, 7(4), 1801093 (9 pp.). https://doi.org/10.1002/ente.201801093
The origin of the catalytic activity of a metal hydride in CO<SUB>2</SUB> reduction
Kato, S., Matam, S. K., Kerger, P., Bernard, L., Battaglia, C., Vogel, D., … Züttel, A. (2016). The origin of the catalytic activity of a metal hydride in CO2 reduction. Angewandte Chemie International Edition, 55(20), 6028-6032. https://doi.org/10.1002/anie.201601402
Enhanced reduction of CO<SUB>2</SUB> to CO over Cu–In electrocatalysts: Catalyst evolution is the key
Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., & Pérez-Ramírez, J. (2016). Enhanced reduction of CO2 to CO over Cu–In electrocatalysts: Catalyst evolution is the key. ACS Catalysis, 6(9), 6265-6274. https://doi.org/10.1021/acscatal.6b02067
Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction
Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., & Pérez-Ramírez, J. (2016). Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. Journal of Catalysis, 343, 266-277. https://doi.org/10.1016/j.jcat.2015.12.014
Optimal energy system transformation of a neighbourhood
Wu, R., Mavromatidis, G., Orehounig, K., & Carmeliet, J. (2016). Optimal energy system transformation of a neighbourhood. In G. Habert & A. Schlueter (Eds.), Expanding boundaries. Systems thinking in the built environment (pp. 58-63). https://doi.org/10.3218/3774-6_10
Surface reactions are crucial for energy storage
Callini, E., Kato, S., Mauron, P., & Züttel, A. (2015). Surface reactions are crucial for energy storage. Chimia, 69(5), 269-273. https://doi.org/10.2533/chimia.2015.269
Storage of renewable energy by reduction of CO<SUB>2</SUB> with hydrogen
Züttel, A., Mauron, P., Kato, S., Callini, E., Holzer, M., & Huang, J. (2015). Storage of renewable energy by reduction of CO2 with hydrogen. Chimia, 69(5), 264-268. https://doi.org/10.2533/chimia.2015.264