Active Filters

  • (-) Keywords = CO2 reduction
  • (-) Keywords ≠ core−shell structure
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Eliminating flooding-related issues in electrochemical CO<sub>₂</sub>-to-CO converters: two lines of defense
Vesztergom, S., Senocrate, A., Kong, Y., Kolivoška, V., Bernasconi, F., Zboray, R., … Broekmann, P. (2023). Eliminating flooding-related issues in electrochemical CO-to-CO converters: two lines of defense. Chimia, 77(3), 104 (6 pp.). https://doi.org/10.2533/chimia.2023.104
Graphene nanoplatelets promoted CoO-based catalyst for low temperature CO<sub>2</sub> methanation reaction
Zhong, L., Pham, T. H. M., Ko, Y., & Züttel, A. (2023). Graphene nanoplatelets promoted CoO-based catalyst for low temperature CO2 methanation reaction. Frontiers in Chemical Engineering, 5, 1160254 (9 pp.). https://doi.org/10.3389/fceng.2023.1160254
Enhanced electrocatalytic CO<sub>2</sub> reduction to C<sub>2+</sub> products by adjusting the local reaction environment with polymer binders
Pham, T. H. M., Zhang, J., Li, M., Shen, T. H., Ko, Y., Tileli, V., … Züttel, A. (2022). Enhanced electrocatalytic CO2 reduction to C2+ products by adjusting the local reaction environment with polymer binders. Advanced Energy Materials, 12(9), 2103663 (10 pp.). https://doi.org/10.1002/aenm.202103663
Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO<sub>2</sub> reduction
Senocrate, A., Bernasconi, F., Rentsch, D., Kraft, K., Trottmann, M., Wichser, A., … Battaglia, C. (2022). Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction. ACS Applied Energy Materials, 5(11), 14504-14512. https://doi.org/10.1021/acsaem.2c03054
Biomimicry designs for photoelectrochemical systems: strategies to improve light delivery efficiency
Brillas, E., Serrà, A., & Garcia-Segura, S. (2021). Biomimicry designs for photoelectrochemical systems: strategies to improve light delivery efficiency. Current Opinion in Electrochemistry, 26, 100660 (10 pp.). https://doi.org/10.1016/j.coelec.2020.100660
Limitations of identical location SEM as a method of degradation studies on surfactant capped nanoparticle electrocatalysts
Hou, Y., Kovács, N., Xu, H., Sun, C., Erni, R., Gálvez-Vázquez, M. de J., … Broekmann, P. (2021). Limitations of identical location SEM as a method of degradation studies on surfactant capped nanoparticle electrocatalysts. Journal of Catalysis, 394, 58-66. https://doi.org/10.1016/j.jcat.2020.12.006
CO<sub>2</sub> hydrogenation over unsupported Fe-Co nanoalloy catalysts
Calizzi, M., Mutschler, R., Patelli, N., Migliori, A., Zhao, K., Pasquini, L., & Züttel, A. (2020). CO2 hydrogenation over unsupported Fe-Co nanoalloy catalysts. Nanomaterials, 10(7), 1360 (12 pp.). https://doi.org/10.3390/nano10071360
Electrochemical reconstruction of ZnO for selective reduction of CO<sub>2</sub> to CO
Luo, W., Zhang, Q., Zhang, J., Moioli, E., Zhao, K., & Züttel, A. (2020). Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Applied Catalysis B: Environmental, 273, 119060 (9 pp.). https://doi.org/10.1016/j.apcatb.2020.119060
Understanding catalysis - a simplified simulation of catalytic reactors for CO&lt;sub&gt;2&lt;/sub&gt; reduction
Terreni, J., Borgschulte, A., Hillestad, M., & Patterson, B. D. (2020). Understanding catalysis - a simplified simulation of catalytic reactors for CO2 reduction. ChemEngineering, 4(4), 62 (16 pp.). https://doi.org/10.3390/chemengineering4040062
Hydride formation diminishes CO&lt;sub&gt;2&lt;/sub&gt; reduction rate on palladium
Billeter, E., Terreni, J., & Borgschulte, A. (2019). Hydride formation diminishes CO2 reduction rate on palladium. ChemPhysChem, 20, 1382-1391. https://doi.org/10.1002/cphc.201801081
Photonic curing: activation and stabilization of metal membrane catalysts (MMCs) for the electrochemical reduction of CO&lt;sub&gt;2&lt;/sub&gt;
Hou, Y., Bolat, S., Bornet, A., Romanyuk, Y. E., Guo, H., Moreno-García, P., … Broekmann, P. (2019). Photonic curing: activation and stabilization of metal membrane catalysts (MMCs) for the electrochemical reduction of CO2. ACS Catalysis, 9(10), 9518-9529. https://doi.org/10.1021/acscatal.9b03664
Sorption-enhanced methanol synthesis
Terreni, J., Trottmann, M., Franken, T., Heel, A., & Borgschulte, A. (2019). Sorption-enhanced methanol synthesis. Energy Technology, 7(4), 1801093 (9 pp.). https://doi.org/10.1002/ente.201801093
The origin of the catalytic activity of a metal hydride in CO<sub>2</sub> reduction
Kato, S., Matam, S. K., Kerger, P., Bernard, L., Battaglia, C., Vogel, D., … Züttel, A. (2016). The origin of the catalytic activity of a metal hydride in CO2 reduction. Angewandte Chemie International Edition, 55(20), 6028-6032. https://doi.org/10.1002/anie.201601402
Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction
Larrazábal, G. O., Martín, A. J., Mitchell, S., Hauert, R., & Pérez-Ramírez, J. (2016). Synergistic effects in silver–indium electrocatalysts for carbon dioxide reduction. Journal of Catalysis, 343, 266-277. https://doi.org/10.1016/j.jcat.2015.12.014
Optimal energy system transformation of a neighbourhood
Wu, R., Mavromatidis, G., Orehounig, K., & Carmeliet, J. (2016). Optimal energy system transformation of a neighbourhood. In G. Habert & A. Schlueter (Eds.), Expanding boundaries. Systems thinking in the built environment (pp. 58-63). https://doi.org/10.3218/3774-6_10
Surface reactions are crucial for energy storage
Callini, E., Kato, S., Mauron, P., & Züttel, A. (2015). Surface reactions are crucial for energy storage. Chimia, 69(5), 269-273. https://doi.org/10.2533/chimia.2015.269
Storage of renewable energy by reduction of CO<SUB>2</SUB> with hydrogen
Züttel, A., Mauron, P., Kato, S., Callini, E., Holzer, M., & Huang, J. (2015). Storage of renewable energy by reduction of CO2 with hydrogen. Chimia, 69(5), 264-268. https://doi.org/10.2533/chimia.2015.264