| Mechanical behavior of Ce<SUB>0.9</SUB>Gd<SUB>0.1</SUB>O<SUB>1.95</SUB>-La<SUB>0.6</SUB>Sr<SUB>0.4</SUB>Co<SUB>0.2</SUB>Fe<SUB>0.8</SUB>O<SUB>3−δ</SUB> oxygen electrode with a coral microstructure for solid oxide fuel cell and solid oxide electrolyzer cel
Sar, J., Almeida, A., Ghisleni, R., Dessemond, L., & Djurado, E. (2016). Mechanical behavior of Ce0.9Gd0.1O1.95-La0.6Sr0.4Co0.2Fe0.8O3−δ oxygen electrode with a coral microstructure for solid oxide fuel cell and solid oxide electrolyzer cell. Ceramics International, 42(15), 16981-16991. https://doi.org/10.1016/j.ceramint.2016.07.204 |
| Strength of an electrolyte supported solid oxide fuel cell
Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., & Kuebler, J. (2015). Strength of an electrolyte supported solid oxide fuel cell. Journal of Power Sources, 297, 158-167. https://doi.org/10.1016/j.jpowsour.2015.07.075 |
| Electronic conductivity enhancement of (La,Sr)TiO<SUB>3</SUB> with Nb-doping on B-site
Kazakevičius, E., Tsekouras, G., Michalow-Mauke, K. A., Kazlauskas, S., & Graule, T. (2014). Electronic conductivity enhancement of (La,Sr)TiO3 with Nb-doping on B-site. Fuel Cells, 14(6), 954-960. https://doi.org/10.1002/fuce.201400015 |
| Stochastic 3D modeling of La<SUB>0.6</SUB>Sr<SUB>0.4</SUB>CoO<SUB>3−<I>δ</I></SUB> cathodes based on structural segmentation of FIB–SEM images
Gaiselmann, G., Neumann, M., Holzer, L., Hocker, T., Prestat, M. R., & Schmidt, V. (2013). Stochastic 3D modeling of La0.6Sr0.4CoO3−δ cathodes based on structural segmentation of FIB–SEM images. Computational Materials Science, 67, 48-62. https://doi.org/10.1016/j.commatsci.2012.08.030 |
| Redox dynamics of sulphur with Ni/GDC anode during SOFC operation at mid- and low-range temperatures: an <I>operando </I>S K-edge XANES study
Nurk, G., Huthwelker, T., Braun, A., Ludwig, C., Lust, E., & Struis, R. P. W. J. (2013). Redox dynamics of sulphur with Ni/GDC anode during SOFC operation at mid- and low-range temperatures: an operando S K-edge XANES study. Journal of Power Sources, 240, 448-457. https://doi.org/10.1016/j.jpowsour.2013.03.187 |
| Electronic origin of conductivity changes and isothermal expansion of Ta- and Ti-substituted La<SUB>1/2</SUB>Sr<SUB>1/2</SUB>Fe-oxide in oxidative and reducing atmosphere
Braun, A., Erat, S., Bayraktar, D., Harvey, A., & Graule, T. (2012). Electronic origin of conductivity changes and isothermal expansion of Ta- and Ti-substituted La1/2Sr1/2Fe-oxide in oxidative and reducing atmosphere. Chemistry of Materials, 24(8), 1529-1535. https://doi.org/10.1021/cm300423m |
| On the chemical interaction of nanoscale lanthanum doped strontium titanates with common scandium and yttrium stabilized electrolyte materials
Burnat, D., Heel, A., Holzer, L., Otal, E., Kata, D., & Graule, T. (2012). On the chemical interaction of nanoscale lanthanum doped strontium titanates with common scandium and yttrium stabilized electrolyte materials. International Journal of Hydrogen Energy, 37(23), 18326-18341. https://doi.org/10.1016/j.ijhydene.2012.09.022 |
| Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis
Burnat, D., Heel, A., Holzer, L., Kata, D., Lis, J., & Graule, T. (2012). Synthesis and performance of A-site deficient lanthanum-doped strontium titanate by nanoparticle based spray pyrolysis. Journal of Power Sources, 201, 26-36. https://doi.org/10.1016/j.jpowsour.2011.10.088 |
| Nickel agglomeration in solid oxide fuel cells: the influence of temperature
Iwanschitz, B., Holzer, L., Mai, A., & Schütze, M. (2012). Nickel agglomeration in solid oxide fuel cells: the influence of temperature. Solid State Ionics, 211, 69-73. https://doi.org/10.1016/j.ssi.2012.01.015 |
| Flame spray synthesis of nanoscale La<SUB>0.6</SUB>Sr<SUB>0.4</SUB>Co <SUB>0.2</SUB>Fe<SUB>0.8</SUB>O<SUB>3-</SUB><I><SUB>δ</SUB></I> and Ba<SUB>0.5</SUB>Sr<SUB>0.5</SUB>Co<SUB>0.8</SUB>Fe<SUB>0.2</SUB>O<SUB>3-</SUB><I><SUB>δ</SUB></I> as cathode material
Heel, A., Holtappels, P., Hug, P., & Graule, T. (2010). Flame spray synthesis of nanoscale La0.6Sr0.4Co 0.2Fe0.8O3-δ and Ba0.5Sr0.5Co0.8Fe0.2O3-δ as cathode materials for intermediate temperature solid oxide fuel cells. Fuel Cells, 10(3), 419-432. https://doi.org/10.1002/fuce.200900093 |
| Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale
Wiedenmann, D., Hauch, A., Grobéty, B., Mogensen, M., & Vogt, U. F. (2010). Complementary techniques for solid oxide electrolysis cell characterisation at the micro- and nano-scale. International Journal of Hydrogen Energy, 35(10), 5053-5060. https://doi.org/10.1016/j.ijhydene.2009.09.074 |
| Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy
Braun, A., Janousch, M., Sfeir, J., Kiviaho, J., Noponen, M., Huggins, F. E., … Graule, T. (2008). Molecular speciation of sulfur in solid oxide fuel cell anodes with X-ray absorption spectroscopy. Journal of Power Sources, 183(2), 564-570. https://doi.org/10.1016/j.jpowsour.2008.05.048 |
| SOFC-anodes, proof for a finite-length type Gerischer impedance?
Boukamp, B. A., Verbraeken, M., Blank, D. H. A., & Holtappels, P. (2006). SOFC-anodes, proof for a finite-length type Gerischer impedance? Solid State Ionics, 177(26-32), 2539-2541. https://doi.org/10.1016/j.ssi.2006.03.002 |
| Preparation and electrochemical characterisation of supporting SOFC-Ni-YZT anodes
Holtappels, P., Verbraeken, M., Vogt, U., Blank, D. H. A., & Boukamp, B. A. (2006). Preparation and electrochemical characterisation of supporting SOFC-Ni-YZT anodes. Solid State Ionics, 177(19-25), 2029-2032. https://doi.org/10.1016/j.ssi.2006.06.018 |