Active Filters

  • (-) Keywords = TiO2
Search Results 1 - 20 of 39
Select Page
Modification of NMC811 with titanium for enhanced cycling and high-voltage stability
Bizzotto, F., Dachraoui, W., Grissa, R., Zhao, W., Pagani, F., Querel, E., … Battaglia, C. (2023). Modification of NMC811 with titanium for enhanced cycling and high-voltage stability. Electrochimica Acta, 462, 142758 (11 pp.). https://doi.org/10.1016/j.electacta.2023.142758
Single nanosized graphene/TiO<sub>x</sub> multi-shells on TiO<sub>2</sub> core via rapid-concomitant reaction pathway on metal oxide/polymer interface
Kato, K., Xin, Y., Vaucher, S., & Shirai, T. (2022). Single nanosized graphene/TiOx multi-shells on TiO2 core via rapid-concomitant reaction pathway on metal oxide/polymer interface. Scripta Materialia, 208, 114358 (6 pp.). https://doi.org/10.1016/j.scriptamat.2021.114358
Hydrogen induced trap states in TiO<sub>2</sub> probed by resonant X-ray photoemission
Billeter, E., Sterzi, A., Aribia, A., Grazioli, C., Coreno, M., Bleiner, D., & Borgschulte, A. (2021). Hydrogen induced trap states in TiO2 probed by resonant X-ray photoemission. In D. Bleiner (Ed.), Proceedings of SPIE: Vol. 11886. International conference on X-ray lasers 2020 (p. 118860W (9 pp.). https://doi.org/10.1117/12.2591982
Enhanced performance of planar perovskite solar cells using dip-coated TiO&lt;sub&gt;2&lt;/sub&gt; as electron transporting layer
El Haimeur, A., Makha, M., Bakkali, H., González-Leal, J. M., Blanco, E., Dominguez, M., & Voitenko, Z. V. (2020). Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer. Solar Energy, 195, 475-482. https://doi.org/10.1016/j.solener.2019.11.094
A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidation
Siol, S., Ott, N., Beall, C., Stiefel, M., Unutulmazsoy, Y., Döbeli, M., … Cancellieri, C. (2020). A combinatorial guide to phase formation and surface passivation of tungsten titanium oxide prepared by thermal oxidation. Acta Materialia, 186, 95-104. https://doi.org/10.1016/j.actamat.2019.12.026
Secondary particle properties for the ion beam sputtering of TiO&lt;sub&gt;2&lt;/sub&gt; in a reactive oxygen atmosphere
Bundesmann, C., & Amelal, T. (2019). Secondary particle properties for the ion beam sputtering of TiO2 in a reactive oxygen atmosphere. Applied Surface Science, 485, 391-401. https://doi.org/10.1016/j.apsusc.2019.04.078
A novel single-mode microwave assisted synthesis of metal oxide as visible-light photocatalyst
Kato, K., Vaucher, S., Hoffmann, P., Xin, Y., & Shirai, T. (2019). A novel single-mode microwave assisted synthesis of metal oxide as visible-light photocatalyst. Materials Letters, 235(000448000700031), 125-128. https://doi.org/10.1016/j.matlet.2018.09.132
Evidencing early pyrochlore formation in rare-earth doped TiO<sub>2</sub> nanocrystals: Structure sensing via VIS and NIR Er<sup>3+</sup> light emission
Camps, I., Borlaf, M., Toudert, J., de Andrés, A., Colomer, M. T., Moreno, R., & Serna, R. (2018). Evidencing early pyrochlore formation in rare-earth doped TiO2 nanocrystals: Structure sensing via VIS and NIR Er3+ light emission. Journal of Alloys and Compounds, 735, 2267-2274. https://doi.org/10.1016/j.jallcom.2017.11.262
Synthesis of high surface area TiO<sub>2</sub> aerogel support with Pt nanoparticle catalyst and CO oxidation study
Choi, H., Carboni, M., Kim, Y. K., Jung, C. H., Moon, S. Y., Koebel, M. M., & Park, J. Y. (2018). Synthesis of high surface area TiO2 aerogel support with Pt nanoparticle catalyst and CO oxidation study. Catalysis Letters, 148(5), 1504-1513. https://doi.org/10.1007/s10562-018-2355-y
Microwave-assisted synthesis of TiO&lt;sub&gt;2&lt;/sub&gt; nanoparticles: photocatalytic activity of powders and thin films
Falk, G. S., Borlaf, M., López-Muñoz, M. J., Fariñas, J. C., Rodrigues Neto, J. B., & Moreno, R. (2018). Microwave-assisted synthesis of TiO2 nanoparticles: photocatalytic activity of powders and thin films. Journal of Nanoparticle Research, 20(2), Article:23 (10 pp.). https://doi.org/10.1007/s11051-018-4140-7
Photocatalytic activity of nanocrystalline TiNb&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;7&lt;/sub&gt; obtained by a colloidal sol-gel route
Falk, G. S., Borlaf, M., López-Muñoz, M. J., Rodrigues Neto, J. B., & Moreno, R. (2018). Photocatalytic activity of nanocrystalline TiNb2O7 obtained by a colloidal sol-gel route. Ceramics International, 44(6), 7122-7127. https://doi.org/10.1016/j.ceramint.2018.01.153
Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination
Lucchini, M. A., Lizundia, E., Moser, S., Niederberger, M., & Nyström, G. (2018). Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination. ACS Applied Materials and Interfaces, 10(35), 29599-29607. https://doi.org/10.1021/acsami.8b09735
TiO<sub>2</sub> as intermediate buffer layer in Cu(In,Ga)Se<sub>2</sub> solar cells
Löckinger, J., Nishiwaki, S., Weiss, T. P., Bissig, B., Romanyuk, Y. E., Buecheler, S., & Tiwari, A. N. (2018). TiO2 as intermediate buffer layer in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 174, 397-404. https://doi.org/10.1016/j.solmat.2017.09.030
Agglomeration potential of TiO<SUB>2</SUB> in synthetic leachates made from the fly ash of different incinerated wastes
He, X., Mitrano, D. M., Nowack, B., Kyoung Bahk, Y., Figi, R., Schreiner, C., … Wang, J. (2017). Agglomeration potential of TiO2 in synthetic leachates made from the fly ash of different incinerated wastes. Environmental Pollution, 223, 616-623. https://doi.org/10.1016/j.envpol.2017.01.065
Urchin-inspired ZnO-TiO<sub>2</sub> core-shell as building blocks for dye sensitized solar cells
Karam, C., Guerra-Nuñez, C., Habchi, R., Herro, Z., Abboud, N., Khoury, A., … Bechelany, M. (2017). Urchin-inspired ZnO-TiO2 core-shell as building blocks for dye sensitized solar cells. Materials and Design, 126, 314-321. https://doi.org/10.1016/j.matdes.2017.04.019
Pd subnano-clusters on TiO<SUB>2</SUB> for solar-light removal of NO
Fujiwara, K., Müller, U., & Pratsinis, S. E. (2016). Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catalysis, 6(3), 1887-1893. https://doi.org/10.1021/acscatal.5b02685
Superhydrophilic ceramic glazes for sanitaryware
Knies, F., Schrantz, K., Aneziris, C., Gauckler, L., & Graule, T. (2016). Superhydrophilic ceramic glazes for sanitaryware. Journal of Ceramic Science and Technology, 7(1), 53-63. https://doi.org/10.4416/JCST2015-00024
Comparison of photoelectrochemical properties of TiO<sub>2</sub> Nanotubes and sol-gel
Regonini, D., Chen, G., Leach, C., & Clemens, F. J. (2016). Comparison of photoelectrochemical properties of TiO2 Nanotubes and sol-gel. Electrochimica Acta, 213, 31-36. https://doi.org/10.1016/j.electacta.2016.07.097
Macrophage polarization by titanium dioxide (TiO<SUB>2</SUB>) particles: size matters
Schoenenberger, A. D., Schipanski, A., Malheiro, V., Kucki, M., Snedeker, J. G., Wick, P., & Maniura-Weber, K. (2016). Macrophage polarization by titanium dioxide (TiO2) particles: size matters. ACS Biomaterials Science & Engineering, 2(6), 908-919. https://doi.org/10.1021/acsbiomaterials.6b00006
Anodized TiO<SUB>2</SUB> Nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties
Regonini, D., & Clemens, F. J. (2015). Anodized TiO2 Nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties. Materials Letters, 142, 97-101. https://doi.org/10.1016/j.matlet.2014.11.145