Active Filters

  • (-) Keywords = UV
Search Results 1 - 9 of 9
  • RSS Feed
Select Page
A photon counting imaging detector for UV space missions
Conti, L., Barnstedt, J., Diebold, S., Höltzli, M., Kalkuhl, C., Kappelmann, N., … Schaadt, D. M. (2022). A photon counting imaging detector for UV space missions. In J. W. A. den Herder, S. Nikzad, & K. Nakazawa (Eds.), Proceedings of SPIE: Vol. 12181. Space telescopes and instrumentation 2022: ultraviolet to Gamma Ray (p. 121810H (12 pp.). https://doi.org/10.1117/12.2628735
Microchannel-plate detector development for ultraviolet missions
Conti, L., Barnstedt, J., Buntrock, S., Diebold, S., Hanke, L., Kalkuhl, C., … Schaadt, D. M. (2020). Microchannel-plate detector development for ultraviolet missions. In J. W. A. den Herder, S. Nikzad, & K. Nakazawa (Eds.), Proceedings of SPIE: Vol. 1144. Space telescopes and instrumentation 2020: ultraviolet to gamma ray (p. 114440K (13 pp.). https://doi.org/10.1117/12.2560663
Development of UV-curable ZrO<sub>2</sub> slurries for additive manufacturing (LCM-DLP) technology
Borlaf, M., Serra-Capdevila, A., Colominas, C., & Graule, T. (2019). Development of UV-curable ZrO2 slurries for additive manufacturing (LCM-DLP) technology. Journal of the European Ceramic Society, 39(13), 3797-3803. https://doi.org/10.1016/j.jeurceramsoc.2019.05.023
Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications
Keirouz, A., Fortunato, G., Zhang, M., Callanan, A., & Radacsi, N. (2019). Nozzle-free electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering applications. Medical Engineering and Physics, 71, 56-67. https://doi.org/10.1016/j.medengphy.2019.06.009
Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks
de Hazan, Y., Thänert, M., Trunec, M., & Misak, J. (2012). Robotic deposition of 3d nanocomposite and ceramic fiber architectures via UV curable colloidal inks. Journal of the European Ceramic Society, 32(6), 1187-1198. https://doi.org/10.1016/j.jeurceramsoc.2011.12.007
Functional ceramic and nanocomposite fibers, cellular articles and microspheres via radiation curable colloidal dispersions
de Hazan, Y., Märkl, V., Heinecke, J., Aneziris, C., & Graule, T. (2011). Functional ceramic and nanocomposite fibers, cellular articles and microspheres via radiation curable colloidal dispersions. Journal of the European Ceramic Society, 31(14), 2601-2611. https://doi.org/10.1016/j.jeurceramsoc.2010.12.006
Controllable surface modifications of polyamide by photo-induced graft polymerization using immobilized photo-initiators
Liu, N., Sun, G., Gaan, S., & Rupper, P. (2010). Controllable surface modifications of polyamide by photo-induced graft polymerization using immobilized photo-initiators. Journal of Applied Polymer Science, 116(6), 3629-3637. https://doi.org/10.1002/app.31909
Shaping radiation curable colloidal dispersions – from polymer/ceramic fibers and microspheres to gradient porosity ceramic bulk materials
de Hazan, Y., Wozniak, M., Heinecke, J., Müller, G., Märkl, V., & Graule, T. (2010). Shaping radiation curable colloidal dispersions – from polymer/ceramic fibers and microspheres to gradient porosity ceramic bulk materials. In T. Ohji, M. Singh, & S. Mathur (Eds.), Ceramic engineering and science proceedings: Vol. 31. Advanced processing and manufacturing technologies for structural and multifunctional materials IV (pp. 85-95). Wiley.
High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants
de Hazan, Y., Heinecke, J., Weber, A., & Graule, T. (2009). High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. Journal of Colloid and Interface Science, 337(1), 66-74. https://doi.org/10.1016/j.jcis.2009.05.012