Active Filters

  • (-) Keywords = ZnO
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Study on crystallographic and electronic structure of micrometre-scale ZnO and ZnO:B rods via X-ray absorption fine-structure spectroscopy
Erat, S., Ozkendir, O. M., Yildirimcan, S., Gunaydin, S., Harfouche, M., Demir, B., & Braun, A. (2021). Study on crystallographic and electronic structure of micrometre-scale ZnO and ZnO:B rods via X-ray absorption fine-structure spectroscopy. Journal of Synchrotron Radiation, 28, 448-454. https://doi.org/10.1107/S1600577520015866
Bioinspired ZnO-based solar photocatalysts for the efficient decontamination of persistent organic pollutants and hexavalent chromium in wastewater
Serrà, A., Gómez, E., & Philippe, L. (2019). Bioinspired ZnO-based solar photocatalysts for the efficient decontamination of persistent organic pollutants and hexavalent chromium in wastewater. Catalysts, 9(12), 974 (16 pp.). https://doi.org/10.3390/catal9120974
Bottle-brush-shaped heterostructures of NiO–ZnO nanowires: growth study and sensing properties
Baratto, C., Kumar, R., Comini, E., Ferroni, M., & Campanini, M. (2017). Bottle-brush-shaped heterostructures of NiO–ZnO nanowires: growth study and sensing properties. Nanotechnology, 28(46), 465502 (9 pp.). https://doi.org/10.1088/1361-6528/aa8d2a
Resistivity transients in solution-processed transparent ZnO thin films as a function of UV illumination wavelength
Fuchs, P., Steinhauser, J., Romanyuk, Y. E., & Tiwari, A. N. (2017). Resistivity transients in solution-processed transparent ZnO thin films as a function of UV illumination wavelength. Physica Status Solidi A: Applications and Materials, 214(6), 1600853 (6 pp.). https://doi.org/10.1002/pssa.201600853
Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood
Lozhechnikova, A., Bellanger, H., Michen, B., Burgert, I., & Österberg, M. (2017). Surfactant-free carnauba wax dispersion and its use for layer-by-layer assembled protective surface coatings on wood. Applied Surface Science, 396, 1273-1281. https://doi.org/10.1016/j.apsusc.2016.11.132
Superhydrophilic ceramic glazes for sanitaryware
Knies, F., Schrantz, K., Aneziris, C., Gauckler, L., & Graule, T. (2016). Superhydrophilic ceramic glazes for sanitaryware. Journal of Ceramic Science and Technology, 7(1), 53-63. https://doi.org/10.4416/JCST2015-00024
Doping strategies for highly conductive Al-doped ZnO films grown from aqueous solution
Fuchs, P., Hagendorfer, H., Romanyuk, Y. E., & Tiwari, A. N. (2015). Doping strategies for highly conductive Al-doped ZnO films grown from aqueous solution. Physica Status Solidi A: Applications and Materials, 212(1), 51-55. https://doi.org/10.1002/pssa.201431145
Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates
Elias, J., Utke, I., Yoon, S., Bechelany, M., Weidenkaff, A., Michler, J., & Philippe, L. (2013). Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates. Electrochimica Acta, 110, 387-392. https://doi.org/10.1016/j.electacta.2013.04.168
Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering
Saji, K. J., Populoh, S., Tiwari, A. N., & Romanyuk, Y. E. (2013). Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering. Physica Status Solidi A: Applications and Materials, 210(7), 1386-1391. https://doi.org/10.1002/pssa.201228293
Passing the limit of electrodeposition: 'gas template’ H2 nanobubbles for growing highly crystalline nanoporous ZnO
Elias, J., Parlinska-Wojtan, M., Erni, R., Niederberger, C., Sauvage, F., Thevenin, M., … Philippe, L. (2012). Passing the limit of electrodeposition: 'gas template’ H2 nanobubbles for growing highly crystalline nanoporous ZnO. Nano Energy, 1(5), 742-750. https://doi.org/10.1016/j.nanoen.2012.06.001
The use of aluminium doped ZnO as transparent conductive oxide for CdS/CdTe solar cells
Perrenoud, J., Kranz, L., Buecheler, S., Pianezzi, F., & Tiwari, A. N. (2011). The use of aluminium doped ZnO as transparent conductive oxide for CdS/CdTe solar cells. Thin Solid Films, 519(21), 7444-7448. https://doi.org/10.1016/j.tsf.2010.12.234
High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants
de Hazan, Y., Heinecke, J., Weber, A., & Graule, T. (2009). High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. Journal of Colloid and Interface Science, 337(1), 66-74. https://doi.org/10.1016/j.jcis.2009.05.012