Active Filters

  • (-) Keywords = aerogel
  • (-) Empa Laboratories ≠ 499 Center for X-ray Analytics
Search Results 1 - 14 of 14
  • RSS Feed
Select Page
Monolithic resorcinol-formaldehyde alcogels and their corresponding nitrogen-doped activated carbons
Civioc, R., Lattuada, M., Koebel, M. M., & Galmarini, S. (2020). Monolithic resorcinol-formaldehyde alcogels and their corresponding nitrogen-doped activated carbons. Journal of Sol-Gel Science and Technology, 95, 719-732. https://doi.org/10.1007/s10971-020-05288-x
Aerogel materials for heritage buildings: materials, properties and case studies
Ganobjak, M., Brunner, S., & Wernery, J. (2020). Aerogel materials for heritage buildings: materials, properties and case studies. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007
Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths
Guerrero Alburquerque, N., Zhao, S., Adilien, N., Koebel, M. M., Lattuada, M., & Malfait, W. J. (2020). Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths. ACS Applied Materials and Interfaces, 12(19), 22037-22049. https://doi.org/10.1021/acsami.0c03047
Topology-optimized insulating facebrick with aerogel filling
Ganobjak, M., & Carstensen, J. V. (2019). Topology-optimized insulating facebrick with aerogel filling. In J. L. Scartezzini & B. Smith (Eds.), Journal of physics: conference series: Vol. 1343. CISBAT 2019 international conference on climate resilient cities - energy efficiency & renewables in the digital era (p. 012195). https://doi.org/10.1088/1742-6596/1343/1/012195
Synthesis of high surface area TiO<sub><small>2</small></sub> aerogel support with Pt nanoparticle catalyst and CO oxidation study
Choi, H., Carboni, M., Kim, Y. K., Jung, C. H., Moon, S. Y., Koebel, M. M., & Park, J. Y. (2018). Synthesis of high surface area TiO2 aerogel support with Pt nanoparticle catalyst and CO oxidation study. Catalysis Letters, 148(5), 1504-1513. https://doi.org/10.1007/s10562-018-2355-y
Hydrophobic TiO<sub>2</sub>-SiO<sub>2</sub> aerogel composites for fast removal of organic pollutants
Xu, H., Jia, J., Zhao, S., Chen, P., Xia, Q., Wu, J., & Zhu, P. (2018). Hydrophobic TiO2-SiO2 aerogel composites for fast removal of organic pollutants. Chemistry Select, 3(37), 10483-10490. https://doi.org/10.1002/slct.201801646
Effect of aging on silica aerogel properties
Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., & Koebel, M. M. (2017). Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 241, 293-302. https://doi.org/10.1016/j.micromeso.2016.11.037
Aerobrick - an aerogel-filled insulating brick
Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick - an aerogel-filled insulating brick. In J. Littlewood & R. J. Howlett (Eds.), Energy procedia: Vol. 134. Sustainability in energy and buildings 2017: proceedings of the ninth KES international conference (pp. 490-498). https://doi.org/10.1016/j.egypro.2017.09.607
Rapid carbon nanotubes suspension in organic solvents using organosilicon polymers
Dalcanale, F., Grossenbacher, J., Blugan, G., Gullo, M. R., Brugger, J., Tevaearai, H., … Kuebler, J. (2016). Rapid carbon nanotubes suspension in organic solvents using organosilicon polymers. Journal of Colloid and Interface Science, 470, 123-131. https://doi.org/10.1016/j.jcis.2016.02.050
Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale
Garay Martinez, R., Goiti, E., Reichenauer, G., Zhao, S., Koebel, M., & Barrio, A. (2016). Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy and Buildings, 128, 111-118. https://doi.org/10.1016/j.enbuild.2016.06.071
Reaction of aerogel containing ceramic fibre insulation to fire exposure
Ghazi Wakili, K., & Remhof, A. (2016). Reaction of aerogel containing ceramic fibre insulation to fire exposure. Fire and Materials, 41(1), 29-39. https://doi.org/10.1002/fam.2367
Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale
Koebel, M. M., Huber, L., Zhao, S., & Malfait, W. J. (2016). Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. Journal of Sol-Gel Science and Technology, 79(2), 308-318. https://doi.org/10.1007/s10971-016-4012-5
Cost-effective pilot-scale demonstration of ambient-dried silica aerogel production by a novel one-pot process
Huber, L., Zhao, S., & Koebel, M. M. (2015). Cost-effective pilot-scale demonstration of ambient-dried silica aerogel production by a novel one-pot process. In Solar energy and building physics laboratory (LESO-PB) & Ecole Polytechnique Fédérale de Lausanne (EPFL) (Eds.), Vol. I. Proceedings of CISBAT 2015 (pp. 9-14). https://doi.org/10.5075/epfl-cisbat2015-9-14
Aerogel-based thermal superinsulation: an overview
Koebel, M., Rigacci, A., & Achard, P. (2012). Aerogel-based thermal superinsulation: an overview. Journal of Sol-Gel Science and Technology, 63(3), 315-339. https://doi.org/10.1007/s10971-012-2792-9