Active Filters

  • (-) Keywords = aerogel
  • (-) Keywords ≠ activated carbon
  • (-) Full Text ≠ Restricted
Search Results 1 - 20 of 20
  • RSS Feed
Select Page
Gold recovery from E-waste by food-waste amyloid aerogels
Peydayesh, M., Boschi, E., Donat, F., & Mezzenga, R. (2024). Gold recovery from E-waste by food-waste amyloid aerogels. Advanced Materials. https://doi.org/10.1002/adma.202310642
Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils
Qiao, J., Song, Q., Zhang, X., Zhao, S., Liu, J., Nyström, G., & Zeng, Z. (2024). Enhancing interface connectivity for multifunctional magnetic carbon aerogels: an in situ growth strategy of metal-organic frameworks on cellulose nanofibrils. Advanced Science. https://doi.org/10.1002/advs.202400403
Thermally insulating cellulose nanofiber aerogels from brewery residues
Ahmadi Heidari, N., Fathi, M., Hamdami, N., Taheri, H., Siqueira, G., & Nyström, G. (2023). Thermally insulating cellulose nanofiber aerogels from brewery residues. ACS Sustainable Chemistry and Engineering, 11(29), 10698-10708. https://doi.org/10.1021/acssuschemeng.3c01113
Current trends in aerogel use in heritage buildings: case studies from the aerogel architecture award 2021
Ganobjak, M., Brunner, S., Hofmann, J., Klar, V., Ledermann, M., Herzog, V., … Wernery, J. (2023). Current trends in aerogel use in heritage buildings: case studies from the aerogel architecture award 2021. Gels, 9(10), 814 (14 pp.). https://doi.org/10.3390/gels9100814
Development and evaluation of highly thermally insulating aerogel glass bricks
Ganobjak, M., Malfait, W. J., Just, J., Käppeli, M., Mancebo, F., Brunner, S., & Wernery, J. (2023). Development and evaluation of highly thermally insulating aerogel glass bricks. In Journal of physics: conference series: Vol. 2600. Daylighting & electric lighting (p. 112015 (6 pp.). https://doi.org/10.1088/1742-6596/2600/11/112015
Vibration and structure-borne sound isolation properties of silica aerogels
Palacio, O., Malfait, W. J., Michel, S., Barbezat, M., & Mazrouei-Sebdani, Z. (2023). Vibration and structure-borne sound isolation properties of silica aerogels. Construction and Building Materials, 399, 132568 (13 pp.). https://doi.org/10.1016/j.conbuildmat.2023.132568
Aerogel-based solar-powered water production from atmosphere and ocean: a review
Sun, J., Wu, T., Wu, H., Li, W., Li, L., Liu, S., … Zhao, S. (2023). Aerogel-based solar-powered water production from atmosphere and ocean: a review. Materials Science and Engineering: R Reports, 154, 100735 (38 pp.). https://doi.org/10.1016/j.mser.2023.100735
3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management
Wu, T., Ganobjak, M., Siqueira, G., Zeng, Z., Li, M., Filimonova, E., … Zhao, S. (2023). 3D printed polyimide nanocomposite aerogels for electromagnetic interference shielding and thermal management. Advanced Materials Technologies, 8(14), 2202155 (9 pp.). https://doi.org/10.1002/admt.202202155
Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal
Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Advanced Science, 9(11), 2105819 (10 pp.). https://doi.org/10.1002/advs.202105819
Surfactant-free, flexible polymethylsilsesquioxane foams
Huber, L., Hauser, S. B., Ubert, C. J., Rees, M., Fischer, B., Zhao, S., … Malfait, W. J. (2022). Surfactant-free, flexible polymethylsilsesquioxane foams. Journal of Non-Crystalline Solids, 597, 121887 (8 pp.). https://doi.org/10.1016/j.jnoncrysol.2022.121887
Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment
Sivaraman, D., Siqueira, G., Maurya, A. K., Zhao, S., Koebel, M. M., Nyström, G., … Malfait, W. J. (2022). Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment. Carbohydrate Polymers, 292, 119675 (11 pp.). https://doi.org/10.1016/j.carbpol.2022.119675
Aerogel materials for heritage buildings: materials, properties and case studies
Ganobjak, M., Brunner, S., & Wernery, J. (2020). Aerogel materials for heritage buildings: materials, properties and case studies. Journal of Cultural Heritage, 42, 81-98. https://doi.org/10.1016/j.culher.2019.09.007
Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths
Guerrero Alburquerque, N., Zhao, S., Adilien, N., Koebel, M. M., Lattuada, M., & Malfait, W. J. (2020). Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths. ACS Applied Materials and Interfaces, 12(19), 22037-22049. https://doi.org/10.1021/acsami.0c03047
Topology-optimized insulating facebrick with aerogel filling
Ganobjak, M., & Carstensen, J. V. (2019). Topology-optimized insulating facebrick with aerogel filling. In J. L. Scartezzini & B. Smith (Eds.), Journal of physics: conference series: Vol. 1343. CISBAT 2019 international conference on climate resilient cities - energy efficiency & renewables in the digital era (p. 012195 (6 pp.). https://doi.org/10.1088/1742-6596/1343/1/012195
Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study
Iswar, S., Griffa, M., Kaufmann, R., Beltran, M., Huber, L., Brunner, S., … Malfait, W. J. (2019). Effect of aging on thermal conductivity of fiber-reinforced aerogel composites: an X-ray tomography study. Microporous and Mesoporous Materials, 278, 289-296. https://doi.org/10.1016/j.micromeso.2018.12.006
Synthesis of high surface area TiO<sub>2</sub> aerogel support with Pt nanoparticle catalyst and CO oxidation study
Choi, H., Carboni, M., Kim, Y. K., Jung, C. H., Moon, S. Y., Koebel, M. M., & Park, J. Y. (2018). Synthesis of high surface area TiO2 aerogel support with Pt nanoparticle catalyst and CO oxidation study. Catalysis Letters, 148(5), 1504-1513. https://doi.org/10.1007/s10562-018-2355-y
Aerobrick - an aerogel-filled insulating brick
Wernery, J., Ben-Ishai, A., Binder, B., & Brunner, S. (2017). Aerobrick - an aerogel-filled insulating brick. In J. Littlewood & R. J. Howlett (Eds.), Energy procedia: Vol. 134. Sustainability in energy and buildings 2017: proceedings of the ninth KES international conference (pp. 490-498). https://doi.org/10.1016/j.egypro.2017.09.607
Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale
Koebel, M. M., Huber, L., Zhao, S., & Malfait, W. J. (2016). Breakthroughs in cost-effective, scalable production of superinsulating, ambient-dried silica aerogel and silica-biopolymer hybrid aerogels: from laboratory to pilot scale. Journal of Sol-Gel Science and Technology, 79(2), 308-318. https://doi.org/10.1007/s10971-016-4012-5
Cost-effective pilot-scale demonstration of ambient-dried silica aerogel production by a novel one-pot process
Huber, L., Zhao, S., & Koebel, M. M. (2015). Cost-effective pilot-scale demonstration of ambient-dried silica aerogel production by a novel one-pot process. In Solar energy and building physics laboratory (LESO-PB) & Ecole Polytechnique Fédérale de Lausanne (EPFL) (Eds.), Vol. I. Proceedings of CISBAT 2015 (pp. 9-14). https://doi.org/10.5075/epfl-cisbat2015-9-14
Aerogel-based thermal superinsulation: an overview
Koebel, M., Rigacci, A., & Achard, P. (2012). Aerogel-based thermal superinsulation: an overview. Journal of Sol-Gel Science and Technology, 63(3), 315-339. https://doi.org/10.1007/s10971-012-2792-9