Active Filters

  • (-) Keywords = aerogel
  • (-) Empa Authors = Koebel, Matthias M.
  • (-) Empa Authors ≠ Huber, Lukas
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal
Drdova, S., Zhao, S., Giannakou, M., Sivaraman, D., Guerrero-Alburquerque, N., Bonnin, A., … Wang, J. (2022). Biomimetic light-driven aerogel passive pump for volatile organic pollutant removal. Advanced Science, 9(11), 2105819 (10 pp.). https://doi.org/10.1002/advs.202105819
Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment
Sivaraman, D., Siqueira, G., Maurya, A. K., Zhao, S., Koebel, M. M., Nyström, G., … Malfait, W. J. (2022). Superinsulating nanocellulose aerogels: effect of density and nanofiber alignment. Carbohydrate Polymers, 292, 119675 (11 pp.). https://doi.org/10.1016/j.carbpol.2022.119675
Monolithic resorcinol-formaldehyde alcogels and their corresponding nitrogen-doped activated carbons
Civioc, R., Lattuada, M., Koebel, M. M., & Galmarini, S. (2020). Monolithic resorcinol-formaldehyde alcogels and their corresponding nitrogen-doped activated carbons. Journal of Sol-Gel Science and Technology, 95, 719-732. https://doi.org/10.1007/s10971-020-05288-x
Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths
Guerrero Alburquerque, N., Zhao, S., Adilien, N., Koebel, M. M., Lattuada, M., & Malfait, W. J. (2020). Strong, machinable and insulating chitosan-urea aerogels: towards ambient pressure drying of biopolymer aerogel monoliths. ACS Applied Materials and Interfaces, 12(19), 22037-22049. https://doi.org/10.1021/acsami.0c03047
Synthesis of high surface area TiO<sub>2</sub> aerogel support with Pt nanoparticle catalyst and CO oxidation study
Choi, H., Carboni, M., Kim, Y. K., Jung, C. H., Moon, S. Y., Koebel, M. M., & Park, J. Y. (2018). Synthesis of high surface area TiO2 aerogel support with Pt nanoparticle catalyst and CO oxidation study. Catalysis Letters, 148(5), 1504-1513. https://doi.org/10.1007/s10562-018-2355-y
Effect of aging on silica aerogel properties
Iswar, S., Malfait, W. J., Balog, S., Winnefeld, F., Lattuada, M., & Koebel, M. M. (2017). Effect of aging on silica aerogel properties. Microporous and Mesoporous Materials, 241, 293-302. https://doi.org/10.1016/j.micromeso.2016.11.037
Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale
Garay Martinez, R., Goiti, E., Reichenauer, G., Zhao, S., Koebel, M., & Barrio, A. (2016). Thermal assessment of ambient pressure dried silica aerogel composite boards at laboratory and field scale. Energy and Buildings, 128, 111-118. https://doi.org/10.1016/j.enbuild.2016.06.071
Aerogel-based thermal superinsulation: an overview
Koebel, M., Rigacci, A., & Achard, P. (2012). Aerogel-based thermal superinsulation: an overview. Journal of Sol-Gel Science and Technology, 63(3), 315-339. https://doi.org/10.1007/s10971-012-2792-9