Active Filters

  • (-) Keywords = aerogels
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Chemistry of chitosan aerogels: three-ditensional pore control for tailored applications
Takeshita, S., Zhao, S., Malfait, W. J., & Koebel, M. M. (2021). Chemistry of chitosan aerogels: three-ditensional pore control for tailored applications. Angewandte Chemie International Edition, 60(18), 9828-9851. https://doi.org/10.1002/anie.202003053
Transparent, aldehyde-free chitosan aerogel
Takeshita, S., Zhao, S., & Malfait, W. J. (2021). Transparent, aldehyde-free chitosan aerogel. Carbohydrate Polymers, 251, 117089 (8 pp.). https://doi.org/10.1016/j.carbpol.2020.117089
Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering
Ferreira, F. V., Otoni, C. G., De France, K. J., Barud, H. S., Lona, L. M. F., Cranston, E. D., & Rojas, O. J. (2020). Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 137, 126-141. https://doi.org/10.1016/j.mattod.2020.03.003
Solvents, CO<sub>2</sub> and biopolymers: structure formation in chitosan aerogel
Takeshita, S., Sadeghpour, A., Sivaraman, D., Zhao, S., & Malfait, W. J. (2020). Solvents, CO2 and biopolymers: structure formation in chitosan aerogel. Carbohydrate Polymers, 247, 116680 (9 pp.). https://doi.org/10.1016/j.carbpol.2020.116680
Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance
Zeng, Z., Wang, C., Siqueira, G., Han, D., Huch, A., Abdolhosseinzadeh, S., … Nyström, G. (2020). Nanocellulose‐MXene biomimetic aerogels with orientation‐tunable electromagnetic interference shielding performance. Advanced Science, 7(15), 2000979 (9 pp.). https://doi.org/10.1002/advs.202000979
An opinion paper on aerogels for biomedical and environmental applications
García-González, C. A., Budtova, T., Durães, L., Erkey, C., Del Gaudio, P., Gurikov, P., … Smirnova, I. (2019). An opinion paper on aerogels for biomedical and environmental applications. Molecules, 24(9), 1815 (15 pp.). https://doi.org/10.3390/molecules24091815
Formation of nanofibrous structure in biopolymer aerogel during supercritical CO<sub>2</sub> processing: the case of chitosan aerogel
Takeshita, S., Sadeghpour, A., Malfait, W. J., Konishi, A., Otake, K., & Yoda, S. (2019). Formation of nanofibrous structure in biopolymer aerogel during supercritical CO2 processing: the case of chitosan aerogel. Biomacromolecules, 20(5), 2051-2057. https://doi.org/10.1021/acs.biomac.9b00246
Amyloid templated organic-inorganic hybrid aerogels
Nyström, G., Roder, L., Fernández-Ronco, M. P., & Mezzenga, R. (2018). Amyloid templated organic-inorganic hybrid aerogels. Advanced Functional Materials, 28(27), 1703609 (11 pp.). https://doi.org/10.1002/adfm.201703609
Biopolymer aerogels and foams: chemistry, properties, and applications
Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608. https://doi.org/10.1002/anie.201709014
Aerogels
Zhao, S., Manic, M. S., Ruiz-Gonzalez, F., & Koebel, M. M. (2015). Aerogels. In D. Levy & M. Zayat (Eds.), The Sol-Gel Handbook - Synthesis, Characterization, and Applications: Synthesis, Characterization and Applications (pp. 519-574). https://doi.org/10.1002/9783527670819.ch17