Active Filters

  • (-) Keywords = aerogels
  • (-) Empa Laboratories ≠ 302 Cellulose & Wood Materials
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
The aerogel industry
Collins, R. A., Zhao, S., Wang, J., Griffin, J. S., & Steiner III, S. A. (2023). The aerogel industry. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks: Vol. 2522-8706. Springer handbook of aerogels (pp. 1583-1640). https://doi.org/10.1007/978-3-030-27322-4_64
Biopolymer-silica aerogel nanocomposites 25
Zhao, S., Malfait, W. J., Yao, C. J., Liu, X., Koebel, M. M., & Risen, W. M. (2023). Biopolymer-silica aerogel nanocomposites 25. In M. A. Aegerter, N. Leventis, M. Koebel, & S. A. Steiner III (Eds.), Springer handbooks. Springer handbook of aerogels (pp. 653-675). https://doi.org/10.1007/978-3-030-27322-4_25
Multiple assembly strategies for silica aerogel-fiber combinations - a review
Mazrouei-Sebdani, Z., Naeimirad, M., Peterek, S., Begum, H., Galmarini, S., Pursche, F., … Malfait, W. J. (2022). Multiple assembly strategies for silica aerogel-fiber combinations - a review. Materials and Design, 223, 111228 (32 pp.). https://doi.org/10.1016/j.matdes.2022.111228
Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications
Berglund, L., Nissilä, T., Sivaraman, D., Komulainen, S., Telkki, V. V., & Oksman, K. (2021). Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Applied Materials and Interfaces, 13(29), 34899-34909. https://doi.org/10.1021/acsami.1c07954
A systematic study on bio-based hybrid aerogels made of tannin and silica
Koopmann, A. K., Malfait, W. J., Sepperer, T., & Huesing, N. (2021). A systematic study on bio-based hybrid aerogels made of tannin and silica. Materials, 14(18), 5231 (17 pp.). https://doi.org/10.3390/ma14185231
Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging
Sivaraman, D., Zhao, S., Iswar, S., Lattuada, M., & Malfait, W. J. (2021). Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging. Advanced Engineering Materials, 23(10), 2100376 (12 pp.). https://doi.org/10.1002/adem.202100376
Development and validation of retention models in supercritical fluid chromatography for impregnation process design
Sun, M., Ülker, Z., Chen, Z., Sivaraman, D., Johannsen, M., Erkey, C., & Gurikov, P. (2021). Development and validation of retention models in supercritical fluid chromatography for impregnation process design. Applied Sciences, 11(15), 7106 (16 pp.). https://doi.org/10.3390/app11157106
Chemistry of chitosan aerogels: three-ditensional pore control for tailored applications
Takeshita, S., Zhao, S., Malfait, W. J., & Koebel, M. M. (2021). Chemistry of chitosan aerogels: three-ditensional pore control for tailored applications. Angewandte Chemie International Edition, 60(18), 9828-9851. https://doi.org/10.1002/anie.202003053
Transparent, aldehyde-free chitosan aerogel
Takeshita, S., Zhao, S., & Malfait, W. J. (2021). Transparent, aldehyde-free chitosan aerogel. Carbohydrate Polymers, 251, 117089 (8 pp.). https://doi.org/10.1016/j.carbpol.2020.117089
Solvents, CO<sub>2</sub> and biopolymers: structure formation in chitosan aerogel
Takeshita, S., Sadeghpour, A., Sivaraman, D., Zhao, S., & Malfait, W. J. (2020). Solvents, CO2 and biopolymers: structure formation in chitosan aerogel. Carbohydrate Polymers, 247, 116680 (9 pp.). https://doi.org/10.1016/j.carbpol.2020.116680
An opinion paper on aerogels for biomedical and environmental applications
García-González, C. A., Budtova, T., Durães, L., Erkey, C., Del Gaudio, P., Gurikov, P., … Smirnova, I. (2019). An opinion paper on aerogels for biomedical and environmental applications. Molecules, 24(9), 1815 (15 pp.). https://doi.org/10.3390/molecules24091815
Granular aerogel preparation
Koebel, M. M., Zhao, S., & Malfait, W. J. (2019). Granular aerogel preparation. In C. Buratti (Ed.), Materials science and technologies. Translucent silica aerogel: properties, preparation and applications (pp. 31-59). Nova Science Publishers.
Formation of nanofibrous structure in biopolymer aerogel during supercritical CO<sub>2</sub> processing: the case of chitosan aerogel
Takeshita, S., Sadeghpour, A., Malfait, W. J., Konishi, A., Otake, K., & Yoda, S. (2019). Formation of nanofibrous structure in biopolymer aerogel during supercritical CO2 processing: the case of chitosan aerogel. Biomacromolecules, 20(5), 2051-2057. https://doi.org/10.1021/acs.biomac.9b00246
Amyloid templated organic-inorganic hybrid aerogels
Nyström, G., Roder, L., Fernández-Ronco, M. P., & Mezzenga, R. (2018). Amyloid templated organic-inorganic hybrid aerogels. Advanced Functional Materials, 28(27), 1703609 (11 pp.). https://doi.org/10.1002/adfm.201703609
Aerogels
Zhao, S., Manic, M. S., Ruiz-Gonzalez, F., & Koebel, M. M. (2015). Aerogels. In D. Levy & M. Zayat (Eds.), The Sol-Gel handbook: synthesis, characterization, and applications. (pp. 519-574). https://doi.org/10.1002/9783527670819.ch17