Active Filters

  • (-) Keywords = all-solid-state batteries
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12 </sub>protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries
Grissa, R., Seidl, L., Dachraoui, W., Sauter, U., & Battaglia, C. (2022). Li7La3Zr2O12 protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries. ACS Applied Materials and Interfaces, 14(40), 46001-46009. https://doi.org/10.1021/acsami.2c11375
Impact of protonation on the electrochemical performance of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> garnets
Grissa, R., Payandeh, S., Heinz, M., & Battaglia, C. (2021). Impact of protonation on the electrochemical performance of Li7La3Zr2O12 garnets. ACS Applied Materials and Interfaces, 13(12), 14700-14709. https://doi.org/10.1021/acsami.0c23144
Na<sub>2</sub>ZrCl<sub>6</sub> enabling highly stable 3 V all-solid-state Na-ion batteries
Kwak, H., Lyoo, J., Park, J., Han, Y., Asakura, R., Remhof, A., … Jung, Y. S. (2021). Na2ZrCl6 enabling highly stable 3 V all-solid-state Na-ion batteries. Energy Storage Materials, 37, 47-54. https://doi.org/10.1016/j.ensm.2021.01.026
Sodium plating from Na‐&lt;em&gt;β&lt;/em&gt;&quot;‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries
Bay, M. ‐C., Wang, M., Grissa, R., Heinz, M. V. F., Sakamoto, J., & Battaglia, C. (2020). Sodium plating from Na‐β"‐alumina ceramics at room temperature, paving the way for fast‐charging all‐solid‐state batteries. Advanced Energy Materials, 10(3), 1902899 (8 pp.). https://doi.org/10.1002/aenm.201902899
Status and prospects of hydroborate electrolytes for all-solid-state batteries
Duchêne, L., Remhof, A., Hagemann, H., & Battaglia, C. (2020). Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Materials, 25, 782-794. https://doi.org/10.1016/j.ensm.2019.08.032
A review of the MSCA ITN ECOSTORE - novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity
Hadjixenophontos, E., Dematteis, E. M., Berti, N., Wołczyk, A. R., Huen, P., Brighi, M., … Heere, M. (2020). A review of the MSCA ITN ECOSTORE - novel complex metal hydrides for efficient and compact storage of renewable energy as hydrogen and electricity. Inorganics, 8(3), 17 (71 pp.). https://doi.org/10.3390/inorganics8030017
Beyond hydrogen storage—metal hydrides as multifunctional materials for energy storage and conversion
Møller, K. T., Sargent, A. L., Remhof, A., & Heere, M. (2020). Beyond hydrogen storage—metal hydrides as multifunctional materials for energy storage and conversion. Inorganics, 8(11), 58 (5 pp.). https://doi.org/10.3390/inorganics8110058
Direct solution‐based synthesis of the Na&lt;sub&gt;4&lt;/sub&gt;(B&lt;sub&gt;12&lt;/sub&gt;H&lt;sub&gt;12&lt;/sub&gt;)(B&lt;sub&gt;10&lt;/sub&gt;H&lt;sub&gt;10&lt;/sub&gt;) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem, 12(21), 4832-4837. https://doi.org/10.1002/cssc.201902152