Active Filters

  • (-) Keywords = atomic force microscopy
Search Results 1 - 20 of 28
Select Page
Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison
Bushell, M., Meija, J., Chen, M., Batchelor, W., Browne, C., Cho, J. Y., … Johnston, L. J. (2021). Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison. Cellulose, 28(3), 1387-1403. https://doi.org/10.1007/s10570-020-03618-4
Mechanical properties of soft biological membranes for organ-on-a-chip assessed by bulge test and AFM
Zamprogno, P., Thoma, G., Cencen, V., Ferrari, D., Putz, B., Michler, J., … Guenat, O. T. (2021). Mechanical properties of soft biological membranes for organ-on-a-chip assessed by bulge test and AFM. ACS Biomaterials Science & Engineering. https://doi.org/10.1021/acsbiomaterials.0c00515
Focused electron beam-based 3D nanoprinting for scanning probe microscopy: a review
Plank, H., Winkler, R., Schwalb, C. H., Hütner, J., Fowlkes, J. D., Rack, P. D., … Huth, M. (2020). Focused electron beam-based 3D nanoprinting for scanning probe microscopy: a review. Micromachines, 11(1), 48 (31 pp.). https://doi.org/10.3390/mi11010048
Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability
Trachsel, L., Romio, M., Grob, B., Zenobi-Wong, M., Spencer, N. D., Ramakrishna, S. N., & Benetti, E. M. (2020). Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability. ACS Nano, 14(8), 10054-10067. https://doi.org/10.1021/acsnano.0c03239
Relative grain boundary energies in ultrafine grain Ni obtained by high pressure torsion
Zimmerman, J., Sharma, A., Divinski, S. V., & Rabkin, E. (2020). Relative grain boundary energies in ultrafine grain Ni obtained by high pressure torsion. Scripta Materialia, 182, 90-93. https://doi.org/10.1016/j.scriptamat.2020.03.008
Surface-synthesized graphene nanoribbons for room-temperature switching devices: substrate transfer and ex-situ characterization
Borin Barin, G., Fairbrother, A., Rotach, L., Bayle, M., Paillet, M., Liang, L., … Ruffieux, P. (2019). Surface-synthesized graphene nanoribbons for room-temperature switching devices: substrate transfer and ex-situ characterization. ACS Applied Nano Materials, 2(4), 2184-2192. https://doi.org/10.1021/acsanm.9b00151
Effect of ageing on the microstructure of reclaimed asphalt binder with bio-based rejuvenators
Cavalli, M. C., Partl, M. N., & Poulikakos, L. D. (2019). Effect of ageing on the microstructure of reclaimed asphalt binder with bio-based rejuvenators. Road Materials and Pavement Design, 20(7), 1683-1694. https://doi.org/10.1080/14680629.2019.1594049
Microstructural investigation of reclaimed asphalt binder with bio-based rejuvenators
Cavalli, M. C., Zaumanis, M., & Poulikakos, L. D. (2019). Microstructural investigation of reclaimed asphalt binder with bio-based rejuvenators. In L. D. Poulikakos, A. Cannone Falchetto, M. P. Wistuba, B. Hofko, L. Porot, & H. Di Benedetto (Eds.), Rilem Bookseries: Vol. 20. RILEM 252-CMB symposium. Chemo-mechanical characterization of bituminous materials (pp. 39-43). https://doi.org/10.1007/978-3-030-00476-7_7
Conductivity image characterization of gold nanoparticles based-device through atomic force microscopy
Lay-Ekuakille, A., Spano, F., Kapita Mvemba, P., Massaro, A., Galiano, A., Casciaro, S., & Conversano, F. (2019). Conductivity image characterization of gold nanoparticles based-device through atomic force microscopy. In H. Ponce, R. Velázquez, & Z. Wang (Eds.), 2018 Nanotechnology for Instrumentation and Measurement (NANOfIM) (p. (6 pp.). https://doi.org/10.1109/NANOFIM.2018.8688617
Growing polymer brushes from a variety of substrates under ambient conditions by Cu<sup>0</sup>-mediated surface-initiated ATRP
Yan, W., Fantin, M., Ramakrishna, S. N., Spencer, N., Matyjaszewski, K., & Benetti, E. M. (2019). Growing polymer brushes from a variety of substrates under ambient conditions by Cu0-mediated surface-initiated ATRP. ACS Applied Materials and Interfaces, 11(30), 2470-2477. https://doi.org/10.1021/acsami.9b09529
About the influence of a water-based priming system on the interactions between wood and one-component polyurethane adhesive studied by atomic force microscopy and confocal Raman spectroscopy imaging
Casdorff, K., Kläusler, O., Gabriel, J., Amen, C., Lehringer, C., Burgert, I., & Keplinger, T. (2018). About the influence of a water-based priming system on the interactions between wood and one-component polyurethane adhesive studied by atomic force microscopy and confocal Raman spectroscopy imaging. International Journal of Adhesion and Adhesives, 80, 52-59. https://doi.org/10.1016/j.ijadhadh.2017.10.001
Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC- and QI<sup>TM</sup> mode
Casdorff, K., Keplinger, T., & Burgert, I. (2017). Nano-mechanical characterization of the wood cell wall by AFM studies: comparison between AC- and QITM mode. Plant Methods, 13, 60 (9 pp.). https://doi.org/10.1186/s13007-017-0211-5
Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers
Osmani, B., Töpper, T., Siketanc, M., Kovacs, G. M., & Müller, B. (2017). Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers. In Y. Bar-Cohen (Ed.), Proceedings of SPIE: Vol. 10163. Electroactive polymer actuators and devices (EAPAD) 2017 (p. 101631E (12 pp.). https://doi.org/10.1117/12.2258214
Electro-spraying and ultra-violet light curing of polydimethylsiloxane to fabricate thin films for low-voltage dielectric elastomer actuators
Weiss, F. M., Kovacs, G., Töpper, T., Osmani, B., Leung, V. Y. F., & Müller, B. (2016). Electro-spraying and ultra-violet light curing of polydimethylsiloxane to fabricate thin films for low-voltage dielectric elastomer actuators. In Y. Bar-Cohen & F. Vidal (Eds.), Proceedings of SPIE: Vol. 9798. Electroactive polymer actuators and devices (EAPAD) 2016 (p. 97983C (9 pp.). https://doi.org/10.1117/12.2220786
Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone
Schwiedrzik, J. J., & Zysset, P. K. (2015). Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone. Journal of Biomechanics, 48(2), 210-216. https://doi.org/10.1016/j.jbiomech.2014.12.001
From virgin to recycled bitumen: a microstructural view
dos Santos, S., Partl, M. N., & Poulikakos, L. D. (2015). From virgin to recycled bitumen: a microstructural view. Composites Part B: Engineering, 80, 177-185. https://doi.org/10.1016/j.compositesb.2015.05.042
A zoom into the nanoscale texture of secondary cell walls
Keplinger, T., Konnerth, J., Aguié-Béghin, V., Rüggeberg, M., Gierlinger, N., & Burgert, I. (2014). A zoom into the nanoscale texture of secondary cell walls. Plant Methods, 10, 1 (7 pp.). https://doi.org/10.1186/1746-4811-10-1
Influence of short and long term aging on chemical, microstructural and macro-mechanical properties of recycled asphalt mixtures
Poulikakos, L. D., dos Santos, S., Bueno, M., Kuentzel, S., Hugener, M., & Partl, M. N. (2014). Influence of short and long term aging on chemical, microstructural and macro-mechanical properties of recycled asphalt mixtures. Construction and Building Materials, 51, 414-423. https://doi.org/10.1016/j.conbuildmat.2013.11.004
Tailoring surface nanostructures on polyaryletherketones for load-bearing implants
Urwyler, P., Zhao, X., Pascual, A., Schift, H., & Müller, B. (2014). Tailoring surface nanostructures on polyaryletherketones for load-bearing implants. European Journal of Nanomedicine, 6(1), 37-46. https://doi.org/10.1515/ejnm-2014-0006
Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis
Burgert, I., & Keplinger, T. (2013). Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. Journal of Experimental Botany, 64(15), 4635-4649. https://doi.org/10.1093/jxb/ert255