Active Filters

  • (-) Keywords = biodegradation
Search Results 1 - 9 of 9
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
The "plastisphere" of biodegradable plastics is characterized by specific microbial taxa of Alpine and Arctic soils
Rüthi, J., Bölsterli, D., Pardi-Comensoli, L., Brunner, I., & Frey, B. (2020). The "plastisphere" of biodegradable plastics is characterized by specific microbial taxa of Alpine and Arctic soils. Frontiers in Environmental Science, 8, 562263 (23 pp.). https://doi.org/10.3389/fenvs.2020.562263
Influence of trace impurities on the <I>in vitro</I> and <I>in vivo</I> degradation of biodegradable Mg–5Zn–0.3Ca alloys
Hofstetter, J., Martinelli, E., Pogatscher, S., Schmutz, P., Povoden-Karadeniz, E., Weinberg, A. M., … Löffler, J. F. (2015). Influence of trace impurities on the in vitro and in vivo degradation of biodegradable Mg–5Zn–0.3Ca alloys. Acta Biomaterialia, 23, 347-353. https://doi.org/10.1016/j.actbio.2015.05.004
Tailored degradation of biocompatible Poly(3-hydroxybutyrate-<I>co</I>-3-hydroxyvalerate)/calcium silicate/poly(lactide-<I>co</I>-glycolide) ternary composites: an <I>in vitro</I> study
Idaszek, J., Zinn, M., Obarzanek-Fojt, M., Zell, V., Swieszkowski, W., & Bruinink, A. (2013). Tailored degradation of biocompatible Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/calcium silicate/poly(lactide-co-glycolide) ternary composites: an in vitro study. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 33(7), 4352-4360. https://doi.org/10.1016/j.msec.2013.06.025
Metabolites and dead-end products from microbial oxidation of quaternary ammonium alcohols
Käch, A., Hofer, M., Rentsch, D., Schnider, C., & Egli, T. (2005). Metabolites and dead-end products from microbial oxidation of quaternary ammonium alcohols. Biodegradation, 16(5), 461-473. https://doi.org/10.1007/s10532-004-5164-5
Degradation kinetics of biodegradable fiber composites
Keller, A., Bruggmann, D., Neff, A., Müller, B., & Wintermantel, E. (2000). Degradation kinetics of biodegradable fiber composites. Journal of Polymers and the Environment, 8(2), 91-96. https://doi.org/10.1023/A:1011574021257
Desulfonation of biotransformation products from commercial linear alkylbenzenesulfonates
Mampel, J., Hitzler, T., Ritter, A., & Cook, A. M. (1998). Desulfonation of biotransformation products from commercial linear alkylbenzenesulfonates. Environmental Toxicology and Chemistry, 17(10), 1960-1963. https://doi.org/10.1897/1551-5028(1998)017<1960:DOBPFC>2.3.CO;2
Linear alkylbenzenesulfonate (LAS) surfactants in a simple test to detect refractory organic carbon (ROC): attribution of recalcitrants to impurities in LAS
Kölbener, P., Baumann, U., Leisinger, T., & Cook, A. M. (1995). Linear alkylbenzenesulfonate (LAS) surfactants in a simple test to detect refractory organic carbon (ROC): attribution of recalcitrants to impurities in LAS. Environmental Toxicology and Chemistry, 14(4), 571-577. https://doi.org/10.1002/etc.5620140404
Nondegraded metabolites arising from the biodegradation of commercial linear alkylbenzenesulfonate (LAS) surfactants in a laboratory trickling filter
Kölbener, P., Baumann, U., Leisinger, T., & Cook, A. M. (1995). Nondegraded metabolites arising from the biodegradation of commercial linear alkylbenzenesulfonate (LAS) surfactants in a laboratory trickling filter. Environmental Toxicology and Chemistry, 14(4), 561-569. https://doi.org/10.1897/1552-8618(1995)14[561:Nmaftb]2.0.Co;2