Active Filters

  • (-) Keywords = biomaterials
Search Results 1 - 12 of 12
  • RSS Feed
Select Page
Assessment of electrospun and ultra-lightweight polypropylene meshes in the sheep model for vaginal surgery
Hympánová, L., Rynkevic, R., Román, S., Mori da Cunha, M. G. M. C., Mazza, E., Zündel, M., … Deprest, J. (2020). Assessment of electrospun and ultra-lightweight polypropylene meshes in the sheep model for vaginal surgery. European Urology Focus, 6, 190-198. https://doi.org/10.1016/j.euf.2018.07.024
Multi-functional biomaterials: combining materials modification strategies for engineering of cell contacting surfaces
Mertgen, A. S., Trossmann, V. T., Guex, A. G., Maniura-Weber, K., Scheibel, T., & Rottmar, M. (2020). Multi-functional biomaterials: combining materials modification strategies for engineering of cell contacting surfaces. ACS Applied Materials and Interfaces, 12(19), 21342-21367. https://doi.org/10.1021/acsami.0c01893
Fabrication of biopassive surfaces using Poly(2-alkyl-2-oxazoline)s: recent progresses and applications
Trachsel, L., Romio, M., Ramakrishna, S. N., & Benetti, E. M. (2020). Fabrication of biopassive surfaces using Poly(2-alkyl-2-oxazoline)s: recent progresses and applications. Advanced Materials Interfaces, 7(19), 2000943 (9 pp.). https://doi.org/10.1002/admi.202000943
Status and future scope of plant-based green hydrogels in biomedical engineering
Mohammadinejad, R., Maleki, H., Larrañeta, E., Fajardo, A. R., Bakhshian Nik, A., Shavandi, A., … Thakur, V. K. (2019). Status and future scope of plant-based green hydrogels in biomedical engineering. Applied Materials Today, 16, 213-246. https://doi.org/10.1016/j.apmt.2019.04.010
Bacterially produced, nacre-inspired composite materials
Spiesz, E. M., Schmieden, D. T., Grande, A. M., Liang, K., Schwiedrzik, J., Natalio, F., … Meyer, A. S. (2019). Bacterially produced, nacre-inspired composite materials. Small, 15(22), 1805312 (6 pp.). https://doi.org/10.1002/smll.201805312
Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction
Kapnisi, M., Mansfield, C., Marijon, C., Guex, A. G., Perbellini, F., Bardi, I., … Stevens, M. M. (2018). Auxetic cardiac patches with tunable mechanical and conductive properties toward treating myocardial infarction. Advanced Functional Materials, 28(21), 1800618 (12 pp.). https://doi.org/10.1002/adfm.201800618
Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: a surface-roughness gradient study
Faia-Torres, A. B., Charnley, M., Goren, T., Guimond-Lischer, S., Rottmar, M., Maniura-Weber, K., … Neves, N. M. (2015). Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: a surface-roughness gradient study. Acta Biomaterialia, 28, 64-75. https://doi.org/10.1016/j.actbio.2015.09.028
Regulation of human mesenchymal stem cell osteogenesis by specific surface density of fibronectin: a gradient study
Faia-Torres, A. B., Goren, T., Ihalainen, T. O., Guimond-Lischer, S., Charnley, M., Rottmar, M., … Neves, N. M. (2015). Regulation of human mesenchymal stem cell osteogenesis by specific surface density of fibronectin: a gradient study. ACS Applied Materials and Interfaces, 7(4), 2367-2375. https://doi.org/10.1021/am506951c
Liquid ammonia treatment of (cationic) nanofibrillated cellulose/vermiculite composites
Ho, T. T. T., Zimmermann, T., Caseri, W. R., & Smith, P. (2013). Liquid ammonia treatment of (cationic) nanofibrillated cellulose/vermiculite composites. Journal of Polymer Science. Part B: Polymer Physics, 51(8), 638-648. https://doi.org/10.1002/polb.23241
Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells
Studer, D., Millan, C., Öztürk, E., Maniura-Weber, K., & Zenobi-Wong, M. (2012). Molecular and biophysical mechanisms regulating hypertrophic differentiation in chondrocytes and mesenchymal stem cells. European Cells and Materials, 24, 118-135. https://doi.org/10.22203/eCM.v024a09
Multi-functional nanocomposite plasma coatings - enabling new applications in biomaterials
Balazs, D. J., Hossain, M. M., Brombacher, E., Fortunato, G., Körner, E., & Hegemann, D. (2007). Multi-functional nanocomposite plasma coatings - enabling new applications in biomaterials. Plasma Processes and Polymers, 4(S1), S380-S385. https://doi.org/10.1002/ppap.200731004
A review of modified DLC coatings for biological applications
Hauert, R. (2003). A review of modified DLC coatings for biological applications. Diamond and Related Materials, 12(3-7), 583-589. https://doi.org/10.1016/S0925-9635(03)00081-5