Active Filters

  • (-) Keywords = biosensor
  • (-) Keywords ≠ wound monitoring
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Site specific biotinylated antibody functionalized Ag@AuNIs LSPR biosensor for the ultrasensitive detection of exosomal MCT4, a glioblastoma progression biomarker
Liu, L., Thakur, A., Kar Li, W., Qiu, G., Yang, T., He, B., … Lawrence Wu, C. M. (2022). Site specific biotinylated antibody functionalized Ag@AuNIs LSPR biosensor for the ultrasensitive detection of exosomal MCT4, a glioblastoma progression biomarker. Chemical Engineering Journal, 446, 137383 (12 pp.). https://doi.org/10.1016/j.cej.2022.137383
Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2
Qiu, G., Gai, Z., Saleh, L., Tang, J., Gui, T., Kullak-Ublick, G. A., & Wang, J. (2021). Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano, 15(4), 7536-7546. https://doi.org/10.1021/acsnano.1c00957
Wearable flexible sweat sensors for healthcare monitoring: a review
Chung, M., Fortunato, G., & Radacsi, N. (2019). Wearable flexible sweat sensors for healthcare monitoring: a review. Journal of the Royal Society Interface, 16(159), 20190217 (15 pp.). https://doi.org/10.1098/rsif.2019.0217
Biosensor-bearing wound dressings for continuous monitoring of hard-to-heal wounds: now and next
Bruinink, A. (2018). Biosensor-bearing wound dressings for continuous monitoring of hard-to-heal wounds: now and next. Biosensors and Bioelectronics Open Access, 2018, 117 (19 pp.). https://doi.org/10.29011/BBOA-117.100017
Enhancing surface plasmon resonance detection using nanostructured Au chips
Indutny, I., Ushenin, Y., Hegemann, D., Vandenbossche, M., Myn'ko, V., Lukaniuk, M., … Khrystosenko, R. (2016). Enhancing surface plasmon resonance detection using nanostructured Au chips. Nano Research Letters, 11, 535 (6 pp.). https://doi.org/10.1186/s11671-016-1760-7
Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions
Dahlin, A. B., Jönsson, P., Jonsson, M. P., Schmid, E., Zhou, Y., & Höök, F. (2008). Synchronized quartz crystal microbalance and nanoplasmonic sensing of biomolecular recognition reactions. ACS Nano, 2(10), 2174-2182. https://doi.org/10.1021/nn800254h
Drahtloser, implantierbarer und passiver Dehnungssensor
Gattiker, F., Neuenschwander, J., Sennhauser, U., Umbrecht, F., & Hierold, C. (2008). Drahtloser, implantierbarer und passiver Dehnungssensor. TM. Technisches Messen, 75(2), 110-119. https://doi.org/10.1524/teme.2008.0854
Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS)
Gattiker, F., Umbrecht, F., Neuenschwander, J., Sennhauser, U., & Hierold, C. (2008). Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sensors and Actuators A: Physical, 145-146(1-2), 291-298. https://doi.org/10.1016/j.sna.2007.09.003
Covalent binding of biorecognition groups to solids using poly(hydromethylsiloxane) as linkage
Zhang, X., Deckert, V., Steiger, B., Hirayama, M. K. N., Suter, U. W., & Pretsch, E. (2004). Covalent binding of biorecognition groups to solids using poly(hydromethylsiloxane) as linkage. Talanta, 63(1), 159-165. https://doi.org/10.1016/j.talanta.2003.11.043
Redox labelled avidin for enzyme sensor architectures
Padeste, C., Steiger, B., Grubelnik, A., & Tiefenauer, L. (2003). Redox labelled avidin for enzyme sensor architectures. Biosensors and Bioelectronics, 19(3), 239-247. https://doi.org/10.1016/S0956-5663(03)00214-8