Active Filters

  • (-) Keywords = brazing
Search Results 1 - 20 of 24
Select Page
Numerical analysis on the residual stress distribution and its influence factor analysis for Si<sub>3</sub>N<sub>4</sub>/42CrMo brazed joint
Wang, T., Zhang, J., Lee, W., Ivas, T., & Leinenbach, C. (2019). Numerical analysis on the residual stress distribution and its influence factor analysis for Si3N4/42CrMo brazed joint. Simulation Modelling Practice and Theory, 95, 49-59. https://doi.org/10.1016/j.simpat.2019.04.007
Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures
Moszner, F., Mata-Osoro, G., Chiodi, M., Janczak-Rusch, J., Blugan, G., & Kuebler, J. (2017). Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures. International Journal of Applied Ceramic Technology, 14, 703-711. https://doi.org/10.1111/ijac.12689
Ceramic protection plates brazed to aluminum brake discs
Gorjan, L., Boretius, M., Blugan, G., Gili, F., Mangherini, D., Lizarralde, X., … Kuebler, J. (2016). Ceramic protection plates brazed to aluminum brake discs. Ceramics International, 42(14), 15739-15746. https://doi.org/10.1016/j.ceramint.2016.07.035
Nano-structured Cu/W brazing fillers for advanced joining applications
Moszner, F., Cancellieri, C., Becker, C., Chiodi, M., Janczak-Rusch, J., & Jeurgens, L. P. H. (2016). Nano-structured Cu/W brazing fillers for advanced joining applications. Journal of Materials Science and Engineering B, 6(9-10), 226-230. https://doi.org/10.17265/2161-6221/2016.9-10.003
Microstructure and strengthening mechanism of Si<SUB>3</SUB>N<SUB>4</SUB>/Invar joint brazed with TiN<SUB>p</SUB>-doped filler
Wang, T., Liu, C., Leinenbach, C., & Zhang, J. (2016). Microstructure and strengthening mechanism of Si3N4/Invar joint brazed with TiNp-doped filler. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 650, 469-477. https://doi.org/10.1016/j.msea.2015.10.038
Relief of the residual stresses in Si<SUB>3</SUB>N<SUB>4</SUB>/Invar joints by multi-layered braze structure – experiments and simulation
Wang, T., Ivas, T., Lee, W., Zhang, J., & Leinenbach, C. (2016). Relief of the residual stresses in Si3N4/Invar joints by multi-layered braze structure – experiments and simulation. Ceramics International, 42(4), 7080-7087. https://doi.org/10.1016/j.ceramint.2016.01.096
Copper-based nanostructured coatings for low-temperature brazing applications
Lehmert, B., Janczak-Rusch, J., Pigozzi, G., Zuraw, P., La Mattina, F., Wojarski, L., … Jeurgens, L. P. H. (2015). Copper-based nanostructured coatings for low-temperature brazing applications. Materials Transactions, 56(7), 1015-1018. https://doi.org/10.2320/matertrans.MI201419
Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance
Longtin, R., Sanchez-Valencia, J. R., Shorubalko, I., Furrer, R., Hack, E., Elsener, H., … Gröning, P. (2015). Active vacuum brazing of CNT films to metal substrates for superior electron field emission performance. Science and Technology of Advanced Materials, 16(1), 015005 (11 pp.). https://doi.org/10.1088/1468-6996/16/1/015005
Microstructural characterization of Si<SUB>3</SUB>N<SUB>4</SUB>/42CrMo joint brazed with Ag–Cu–Ti + TiNp composite filler
Wang, T., Ivas, T., Leinenbach, C., & Zhang, J. (2015). Microstructural characterization of Si3N4/42CrMo joint brazed with Ag–Cu–Ti + TiNp composite filler. Journal of Alloys and Compounds, 651, 623-630. https://doi.org/10.1016/j.jallcom.2015.08.138
Interfacial design for joining technologies: an historical perspective
Janczak-Rusch, J., Kaptay, G., & Jeurgens, L. P. H. (2014). Interfacial design for joining technologies: an historical perspective. Journal of Materials Engineering and Performance, 23(5), 1608-1613. https://doi.org/10.1007/s11665-014-0928-5
Failure mechanisms and cutting characteristics of brazed single diamond grains
Buhl, S., Leinenbach, C., Spolenak, R., & Wegener, K. (2013). Failure mechanisms and cutting characteristics of brazed single diamond grains. International Journal of Advanced Manufacturing Technology, 66(5-8), 775-786. https://doi.org/10.1007/s00170-012-4365-z
Vacuum brazing titanium using thin nickel layer deposited by PVD technique
Elrefaey, A., Wojarski, L., Janczak-Rusch, J., & Tillmann, W. (2013). Vacuum brazing titanium using thin nickel layer deposited by PVD technique. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 565, 180-186. https://doi.org/10.1016/j.msea.2012.12.028
Fatigue and cyclic deformation behavior of brazed steel joints
Koster, M., Kenel, C., Stutz, A., Lee, W. J., Lis, A., Affolter, C., & Leinenbach, C. (2013). Fatigue and cyclic deformation behavior of brazed steel joints. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 581, 90-97. https://doi.org/10.1016/j.msea.2013.05.083
Microstructure, residual stresses and shear strength of diamond-steel-joints brazed with a Cu-Sn-based active filler alloy
Buhl, S., Leinenbach, C., Spolenak, R., & Wegener, K. (2012). Microstructure, residual stresses and shear strength of diamond-steel-joints brazed with a Cu-Sn-based active filler alloy. International Journal of Refractory Metals and Hard Materials, 30(1), 16-24. https://doi.org/10.1016/j.ijrmhm.2011.06.006
Fatigue assessment of defect-free and defect-containing brazed steel joints
Leinenbach, C., Koster, M., & Schindler, H. J. (2012). Fatigue assessment of defect-free and defect-containing brazed steel joints. Journal of Materials Engineering and Performance, 21(5), 739-747. https://doi.org/10.1007/s11665-012-0182-7
Mechanics of fatigue crack growth in a bonding interface
Schindler, H. J., & Leinenbach, C. (2012). Mechanics of fatigue crack growth in a bonding interface. Engineering Fracture Mechanics, 89, 52-64. https://doi.org/10.1016/j.engfracmech.2012.04.009
Fracture behaviour of brazed soft martensitic stainless steel joints under cyclic loading
Başer, T. A., Leinenbach, C., & Schindler, H. J. (2010). Fracture behaviour of brazed soft martensitic stainless steel joints under cyclic loading. In L. Guerra Rosa & F. Margarido (Eds.), Materials science forum: Vol. 636-637. Advanced materials forum V (pp. 1490-1495). https://doi.org/10.4028/www.scientific.net/MSF.636-637.1490
Quasistatic fracture behaviour and defect assessment of brazed soft martensitic stainless steel joints
Leinenbach, C., Schindler, H. J., Başer, T., Rüttimann, N., & Wegener, K. (2010). Quasistatic fracture behaviour and defect assessment of brazed soft martensitic stainless steel joints. Engineering Failure Analysis, 17(3), 672-682. https://doi.org/10.1016/j.engfailanal.2009.05.002
The structure changes in Sn<SUB>1-<I>x</I></SUB>Ti<I><SUB>x</SUB></I> alloys at transition from liquid to solid state
Mudry, S., Korolyshyn, A., Shtablavyi, I., Kulyk, Y., Klotz, U. E., & Leinenbach, C. (2009). The structure changes in Sn1-xTix alloys at transition from liquid to solid state. Physics and Chemistry of Liquids, 47(4), 437-446. https://doi.org/10.1080/00319100802104863
Cyclic fracture behaviour of brazed martensitic stainless steel joints
Schindler, H. J., Leinenbach, C., & Baser, B. (2009). Cyclic fracture behaviour of brazed martensitic stainless steel joints (p. 10 pp.). Presented at the 12th international conference on fracture. .