Active Filters

  • (-) Keywords = carbon nanotubes
  • (-) Empa Authors ≠ Züttel, Andreas
Search Results 1 - 20 of 59
Select Page
Rapid formation of carbon nanotubes–natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration
Promsung, R., Chuaybamrung, A., Georgopoulou, A., Clemens, F., Nakaramontri, Y., Johns, J., … Kalkornsurapranee, E. (2024). Rapid formation of carbon nanotubes–natural rubber films cured with glutaraldehyde for reducing percolation threshold concentration. Discover Nano, 19(1), 30 (14 pp.). https://doi.org/10.1186/s11671-024-03970-5
Carbon nanostructures - silica aerogel composites for adsorption of organic pollutants
Lamy-Mendes, A., Lopes, D., Girão, A. V., Silva, R. F., Malfait, W. J., & Durães, L. (2023). Carbon nanostructures - silica aerogel composites for adsorption of organic pollutants. Toxics, 11(3), 232 (29 pp.). https://doi.org/10.3390/toxics11030232
Release and toxicity assessment of carbon nanomaterial reinforced polymers during the use and end-of-life phases: a comparative review
Romeo, D., Clement, P., & Wick, P. (2023). Release and toxicity assessment of carbon nanomaterial reinforced polymers during the use and end-of-life phases: a comparative review. NanoImpact, 31, 100477 (13 pp.). https://doi.org/10.1016/j.impact.2023.100477
Printed structurally colored cellulose sensors and displays
Wei, J., Aeby, X., & Nyström, G. (2023). Printed structurally colored cellulose sensors and displays. Advanced Materials Technologies, 8(1), 2200897 (7 pp.). https://doi.org/10.1002/admt.202200897
Heterostructure from PbS quantum dot and carbon nanotube inks for high-efficiency near-infrared light-emitting field-effect transistors
Bederak, D., Shulga, A., Kahmann, S., Talsma, W., Pelanskis, J., Dirin, D. N., … Loi, M. A. (2022). Heterostructure from PbS quantum dot and carbon nanotube inks for high-efficiency near-infrared light-emitting field-effect transistors. Advanced Electronic Materials, 8(7), 2101126 (7 pp.). https://doi.org/10.1002/aelm.202101126
Transparent conducting films based on carbon nanotubes: rational design toward the theoretical limit
Ilatovskii, D. A., Gilshtein, E. P., Glukhova, O. E., & Nasibulin, A. G. (2022). Transparent conducting films based on carbon nanotubes: rational design toward the theoretical limit. Advanced Science, 9(24), 2201673 (16 pp.). https://doi.org/10.1002/advs.202201673
Improving the lifetime of hybrid CoPc@MWCNT catalysts for selective electrochemical CO<sub>2</sub>-to-CO conversion
Sun, C., Hou, Y., Lüdi, N., Hu, H., de Jesús Gálvez-Vázquez, M., Liechti, M., … Broekmann, P. (2022). Improving the lifetime of hybrid CoPc@MWCNT catalysts for selective electrochemical CO2-to-CO conversion. Journal of Catalysis, 407, 198-205. https://doi.org/10.1016/j.jcat.2022.02.001
The nucleation, radial growth, and bonding of TiO<sub>2</sub> deposited via atomic layer deposition on single-walled carbon nanotubes
Guerra-Nuñez, C., Putz, B., Savu, R., Li, M., Zhang, Y., Erni, R., … Utke, I. (2021). The nucleation, radial growth, and bonding of TiO2 deposited via atomic layer deposition on single-walled carbon nanotubes. Applied Surface Science, 555, 149662 (11 pp.). https://doi.org/10.1016/j.apsusc.2021.149662
Composites of multiwall carbon nanotubes and conducting polyaniline: bulk samples and films produced from a solution in chloroform
Baćani, M., Novak, M., Kokanović, I., & Babić, D. (2019). Composites of multiwall carbon nanotubes and conducting polyaniline: bulk samples and films produced from a solution in chloroform. Current Applied Physics, 19(7), 775-779. https://doi.org/10.1016/j.cap.2019.04.007
Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing
Kaushik, P., Eliáš, M., Michalička, J., Hegemann, D., Pytlíček, Z., Nečas, D., & Zajíčková, L. (2019). Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing. Surface and Coatings Technology, 370, 235-243. https://doi.org/10.1016/j.surfcoat.2019.04.031
Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
Lanfant, B., Leconte, Y., Debski, N., Bonnefont, G., Pinault, M., Mayne-L′Hermite, M., … Bernard, F. (2019). Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceramics International, 45(2), 2566-2575. https://doi.org/10.1016/j.ceramint.2018.10.187
Nanoengineering of fibre surface for carbon fibre-carbon nanotube hierarchical composites
Szmyt, W., Calame, M., Padeste, C., & Dransfeld, C. (2019). Nanoengineering of fibre surface for carbon fibre-carbon nanotube hierarchical composites. In A. Mouritz, C. Wang, & B. Fox (Eds.), Proceedings of the 2019 international conference on composite materials (ICCM 2019).
Rapid microwave-assisted synthesis of platinum nanoparticles immobilized in electrospun carbon nanofibers for electrochemical catalysis
Shakoorioskooie, M., Menceloglu, Y. Z., Unal, S., & Hayat Soytas, S. (2018). Rapid microwave-assisted synthesis of platinum nanoparticles immobilized in electrospun carbon nanofibers for electrochemical catalysis. ACS Applied Nano Materials, 1(11), 6236-6246. https://doi.org/10.1021/acsanm.8b01395
Mechanical behaviour of dual nanoparticle-reinforced aluminium alloy matrix composite materials depending on milling time
Kwon, H., Kawasaki, A., & Leparoux, M. (2017). Mechanical behaviour of dual nanoparticle-reinforced aluminium alloy matrix composite materials depending on milling time. Journal of Composite Materials, 51(25), 3557-3562. https://doi.org/10.1177/0021998316673521
An all-solution-based hybrid CMOS-like quantum dot/carbon nanotube inverter
Shulga, A. G., Derenskyi, V., Salazar-Rios, J. M., Dirin, D. N., Fritsch, M., Kovalenko, M. V., … Loi, M. A. (2017). An all-solution-based hybrid CMOS-like quantum dot/carbon nanotube inverter. Advanced Materials, 29(35), 1701764 (7 pp.). https://doi.org/10.1002/adma.201701764
Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs
Ilari, G. M., Chawla, V., Matam, S., Zhang, Y., Michler, J., & Erni, R. (2016). Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs. Micron, 84, 37-42. https://doi.org/10.1016/j.micron.2016.02.009
Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds
Bahk, Y. K., He, X., Gitsis, E., Kuo, Y. Y., Kim, N., & Wang, J. (2015). Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds. Journal of Nanoparticle Research, 17, 396 (13 pp.). https://doi.org/10.1007/s11051-015-3203-2
CNT and PDCs: a fruitful association? Study of a polycarbosilane–MWCNT composite
Dalcanale, F., Grossenbacher, J., Blugan, G., Gullo, M. R., Brugger, J., Tevaearai, H., … Kuebler, J. (2015). CNT and PDCs: a fruitful association? Study of a polycarbosilane–MWCNT composite. Journal of the European Ceramic Society, 35(8), 2215-2224. https://doi.org/10.1016/j.jeurceramsoc.2015.02.016
Life cycle assessment study of a field emission display television device
Hischier, R. (2015). Life cycle assessment study of a field emission display television device. International Journal of Life Cycle Assessment, 20(1), 61-73. https://doi.org/10.1007/s11367-014-0806-2
Carbon–metal interfaces analyzed by aberration-corrected TEM: how copper and nickel nanoparticles interact with MWCNTs
Ilari, G. M., Hage, F. S., Zhang, Y., Rossell, M. D., Ramasse, Q. M., Niederberger, M., & Erni, R. (2015). Carbon–metal interfaces analyzed by aberration-corrected TEM: how copper and nickel nanoparticles interact with MWCNTs. Micron, 72, 52-58. https://doi.org/10.1016/j.micron.2015.03.004