Active Filters

  • (-) Keywords = carbonation
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite
Steiner, S., Lothenbach, B., Proske, T., Borgschulte, A., & Winnefeld, F. (2020). Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite. Cement and Concrete Research, 135, 106116 (17 pp.). https://doi.org/10.1016/j.cemconres.2020.106116
Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC
von Greve-Dierfeld, S., Lothenbach, B., Vollpracht, A., Wu, B., Huet, B., Andrade, C., … De Belie, N. (2020). Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Materials and Structures, 53(6), 136 (34 pp.). https://doi.org/10.1617/s11527-020-01558-w
Effect of carbonation on the pore solution of mortar
De Weerdt, K., Plusquellec, G., Belda Revert, A., Geiker, M. R., & Lothenbach, B. (2019). Effect of carbonation on the pore solution of mortar. Cement and Concrete Research, 118, 38-56. https://doi.org/10.1016/j.cemconres.2019.02.004
Carbonation resistance of recycled aggregate concrete
Leemann, A., & Loser, R. (2019). Carbonation resistance of recycled aggregate concrete. Construction and Building Materials, 204, 335-341. https://doi.org/10.1016/j.conbuildmat.2019.01.162
Long-term residual anchorage resistance of gradient anchorages for prestressed CFRP strips
Harmanci, Y. E., Michels, J., Czaderski, C., Loser, R., & Chatzi, E. (2018). Long-term residual anchorage resistance of gradient anchorages for prestressed CFRP strips. Composites Part B: Engineering, 139, 171-184. https://doi.org/10.1016/j.compositesb.2017.11.062
Carbonation resistance of mortar produced with alternative cements
Leemann, A., Pahlke, H., Loser, R., & Winnefeld, F. (2018). Carbonation resistance of mortar produced with alternative cements. Materials and Structures, 51(5), 114 (12 pp.). https://doi.org/10.1617/s11527-018-1239-3
Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars
Shi, Z., Shi, C., Wan, S., Li, N., & Zhang, Z. (2018). Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cement and Concrete Research, 113, 55-64. https://doi.org/10.1016/j.cemconres.2018.07.005
Carbonation of calcium sulfoaluminate mortars
Hargis, C. W., Lothenbach, B., Müller, C. J., & Winnefeld, F. (2017). Carbonation of calcium sulfoaluminate mortars. Cement and Concrete Composites, 80, 123-134. https://doi.org/10.1016/j.cemconcomp.2017.03.003
Carbonation of concrete: the role of CO<SUB>2</SUB> concentration, relative humidity and CO<SUB>2</SUB> buffer capacity
Leemann, A., & Moro, F. (2017). Carbonation of concrete: the role of CO2 concentration, relative humidity and CO2 buffer capacity. Materials and Structures, 50(1), 30 (14 pp.). https://doi.org/10.1617/s11527-016-0917-2
Carbonation resistance of mortar produced with alternative cements
Leemann, A., Pahlke, H., & Winnefeld, F. (2017). Carbonation resistance of mortar produced with alternative cements. In A. Tagnit-Hamou (Ed.), ACI special publication: Vol. 320. 10th ACI/RILEM international conference on cementitious materials and alternative binders for sustainable concrete (p. (13 pp.). American Concrete Institute.
Steady-state O<sub>2</sub> and CO<sub>2</sub> diffusion in carbonated mortars produced with blended cements
Leemann, A., Loser, R., Münch, B., & Lura, P. (2017). Steady-state O2 and CO2 diffusion in carbonated mortars produced with blended cements. Materials and Structures, 50(6), 247 (7 pp.). https://doi.org/10.1617/s11527-017-1118-3
Relation between carbonation resistance, mix design and exposure of mortar and concrete
Leemann, A., Nygaar, P., Kaufmann, J., & Loser, R. (2015). Relation between carbonation resistance, mix design and exposure of mortar and concrete. Cement and Concrete Composites, 62, 33-43. https://doi.org/10.1016/j.cemconcomp.2015.04.020
Carbonation of portland cement mortars including metakaolin and limestone
Shi, Z., Lothenbach, B., Geiker, M. R., Kaufmann, J., Ferreiro, S., & Skibsted, J. (2015). Carbonation of portland cement mortars including metakaolin and limestone (p. (9 pp.). Presented at the 14th international congress on the chemistry of cement (ICCC 2015). .
Investigation of sulfate attack by experimental and thermodynamic means
Kunther, W. (2012). Investigation of sulfate attack by experimental and thermodynamic means [Doctoral dissertation, EPF Lausanne]. https://doi.org/10.5075/epfl-thesis-5263
Ethyl silicate for surface treatment of concrete – part II: characteristics and performance
Pigino, B., Leemann, A., Franzoni, E., & Lura, P. (2012). Ethyl silicate for surface treatment of concrete – part II: characteristics and performance. Cement and Concrete Composites, 34(3), 313-321. https://doi.org/10.1016/j.cemconcomp.2011.11.021
Thermodynamic modeling of cements in different sulfate environments
Kunther, W., Lothenbach, B., & Scrivener, K. (2010). Thermodynamic modeling of cements in different sulfate environments (p. (4 pp.). Presented at the International RILEM symposium on concrete modelling – CONMOD'10. .
Ökologische Betrachtungen zur Dauerhaftigkeit eines Stahlbetonbauteils
Gerdes, A., Haag, C., Künniger, T., Richter, K., & Wittmann, F. H. (1997). Ökologische Betrachtungen zur Dauerhaftigkeit eines Stahlbetonbauteils. Internationale Zeitschrift für Bauinstandsetzen und Baudenkmalpflege, 3(2), 167-170. https://doi.org/10.1515/rbm-1997-0208