Active Filters

  • (-) Keywords = catalysis
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
From inert gas to fertilizer, fuel and fine chemicals: N<sub>2</sub> reduction and fixation
Braun, A., Bora, D. K., Lauterbach, L., Lettau, E., Wang, H., Cramer, S. P., … Guo, J. (2021). From inert gas to fertilizer, fuel and fine chemicals: N2 reduction and fixation. Catalysis Today. https://doi.org/10.1016/j.cattod.2021.04.020
A general synthetic strategy toward highly doped pyridinic nitrogen-rich carbons
Mou, X., Ma, J., Zheng, S., Chen, X., Krumeich, F., Hauert, R., … Ding, Y. (2021). A general synthetic strategy toward highly doped pyridinic nitrogen-rich carbons. Advanced Functional Materials, 31(3), 2006076 (10 pp.). https://doi.org/10.1002/adfm.202006076
Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams
Sehaqui, H., Brahmi, Y., & Ju, W. (2020). Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams. Cellulose, 27(1), 263-271. https://doi.org/10.1007/s10570-019-02805-2
Hydride formation diminishes CO&lt;sub&gt;2&lt;/sub&gt; reduction rate on palladium
Billeter, E., Terreni, J., & Borgschulte, A. (2019). Hydride formation diminishes CO2 reduction rate on palladium. ChemPhysChem, 20, 1382-1391. https://doi.org/10.1002/cphc.201801081
Evolution of water diffusion in a sorption-enhanced methanation catalyst
Delmelle, R., Terreni, J., Remhof, A., Heel, A., Proost, J., & Borgschulte, A. (2018). Evolution of water diffusion in a sorption-enhanced methanation catalyst. Catalysts, 8(9), 341 (15 pp.). https://doi.org/10.3390/catal8090341
Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination
Lucchini, M. A., Lizundia, E., Moser, S., Niederberger, M., & Nyström, G. (2018). Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination. ACS Applied Materials and Interfaces, 10(35), 29599-29607. https://doi.org/10.1021/acsami.8b09735
Selective and stable electroreduction of CO&lt;sub&gt;2&lt;/sub&gt; to CO at the copper/indium interface
Luo, W., Xie, W., Mutschler, R., Oveisi, E., De Gregorio, G. L., Buonsanti, R., & Züttel, A. (2018). Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catalysis, 8(7), 6571-6581. https://doi.org/10.1021/acscatal.7b04457
Development of improved nickel catalysts for sorption enhanced CO<SUB>2</SUB> methanation
Delmelle, R., Duarte, R. B., Franken, T., Burnat, D., Holzer, L., Borgschulte, A., & Heel, A. (2016). Development of improved nickel catalysts for sorption enhanced CO2 methanation. International Journal of Hydrogen Energy, 41(44), 20185-20191. https://doi.org/10.1016/j.ijhydene.2016.09.045
Hierarchy brings function: mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments
Verboekend, D., Keller, T. C., Milina, M., Hauert, R., & Pérez-Ramírez, J. (2013). Hierarchy brings function: mesoporous clinoptilolite and L zeolite catalysts synthesized by tandem acid-base treatments. Chemistry of Materials, 25(9), 1947-1959. https://doi.org/10.1021/cm4006103
Ti cations in sodium alanate
Łodziana, Z., & Züttel, A. (2009). Ti cations in sodium alanate. Journal of Alloys and Compounds, 471(1-2), L29-L31. https://doi.org/10.1016/j.jallcom.2008.03.140
Thin-film metal hydrides
Remhof, A., & Borgschulte, A. (2008). Thin-film metal hydrides. ChemPhysChem, 9(17), 2440-2455. https://doi.org/10.1002/cphc.200800573