Active Filters

  • (-) Keywords = cellulose nanocrystals
  • (-) Keywords ≠ chitin nanocrystals
Search Results 1 - 20 of 21
Select Page
Phase behavior, self-assembly, and adhesive potential of cellulose nanocrystal-bovine serum albumin amyloid composites
De France, K. J., Kummer, N., Campioni, S., & Nyström, G. (2023). Phase behavior, self-assembly, and adhesive potential of cellulose nanocrystal-bovine serum albumin amyloid composites. ACS Applied Materials and Interfaces, 15(1), 1958-1968. https://doi.org/10.1021/acsami.2c14406
Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine
Ferreira, F. V., Souza, A. G., Ajdary, R., de Souza, L. P., Lopes, J. H., Correa, D. S., … Rojas, O. J. (2023). Nanocellulose-based porous materials: regulation and pathway to commercialization in regenerative medicine. Bioactive Materials, 29, 151-176. https://doi.org/10.1016/j.bioactmat.2023.06.020
Biopolymer-based emulsions for the stabilization of <em>Trichoderma atrobrunneum</em> conidia for biological control
Martínez, Y., Heeb, M., Kalač, T., Gholam, Z., Schwarze, F. W. M. R., Nyström, G., & De France, K. (2023). Biopolymer-based emulsions for the stabilization of Trichoderma atrobrunneum conidia for biological control. Applied Microbiology and Biotechnology, 107(4), 1465-1476. https://doi.org/10.1007/s00253-023-12381-y
Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels
Nagel, Y., Sivaraman, D., Neels, A., Zimmermann, T., Zhao, S., Siqueira, G., & Nyström, G. (2023). Anisotropic, strong, and thermally insulating 3D‐printed nanocellulose–PNIPAAM aerogels. Small Structures, 4(12), 2300073 (9 pp.). https://doi.org/10.1002/sstr.202300073
Functionalized cellulose nanocrystals as active reinforcements for light-actuated 3D-printed structures
Müller, L. A. E., Zingg, A., Arcifa, A., Zimmermann, T., Nyström, G., Burgert, I., & Siqueira, G. (2022). Functionalized cellulose nanocrystals as active reinforcements for light-actuated 3D-printed structures. ACS Nano, 16(11), 18210-18222. https://doi.org/10.1021/acsnano.2c05628
Photoresponsive movement in 3D printed cellulose nanocomposites
Müller, L. A. E., Demongeot, A., Vaucher, J., Leterrier, Y., Avaro, J., Liebi, M., … Siqueira, G. (2022). Photoresponsive movement in 3D printed cellulose nanocomposites. ACS Applied Materials and Interfaces, 14(14), 16703-16717. https://doi.org/10.1021/acsami.2c02154
Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison
Bushell, M., Meija, J., Chen, M., Batchelor, W., Browne, C., Cho, J. Y., … Johnston, L. J. (2021). Particle size distributions for cellulose nanocrystals measured by atomic force microscopy: an interlaboratory comparison. Cellulose, 28(3), 1387-1403. https://doi.org/10.1007/s10570-020-03618-4
Functional materials from nanocellulose: utilizing structure-property relationships in bottom-up fabrication
De France, K., Zeng, Z., Wu, T., & Nyström, G. (2021). Functional materials from nanocellulose: utilizing structure-property relationships in bottom-up fabrication. Advanced Materials, 33(28), 2000657 (22 pp.). https://doi.org/10.1002/adma.202000657
Multi-scale structuring of cell-instructive cellulose nanocrystal composite hydrogel sheets via sequential electrospinning and thermal wrinkling
De France, K. J., Xu, F., Toufanian, S., Chan, K. J. W., Said, S., Stimpson, T. C., … Hoare, T. (2021). Multi-scale structuring of cell-instructive cellulose nanocrystal composite hydrogel sheets via sequential electrospinning and thermal wrinkling. Acta Biomaterialia, 128, 250-261. https://doi.org/10.1016/j.actbio.2021.04.044
3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels
Fourmann, O., Hausmann, M. K., Neels, A., Schubert, M., Nyström, G., Zimmermann, T., & Siqueira, G. (2021). 3D printing of shape-morphing and antibacterial anisotropic nanocellulose hydrogels. Carbohydrate Polymers, 259, 117716 (11 pp.). https://doi.org/10.1016/j.carbpol.2021.117716
Mechanically reinforced injectable hydrogels
De France, K. J., Cranston, E. D., & Hoare, T. (2020). Mechanically reinforced injectable hydrogels. ACS Applied Polymer Materials, 2(3), 1016-1030. https://doi.org/10.1021/acsapm.9b00981
Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering
Ferreira, F. V., Otoni, C. G., De France, K. J., Barud, H. S., Lona, L. M. F., Cranston, E. D., & Rojas, O. J. (2020). Porous nanocellulose gels and foams: breakthrough status in the development of scaffolds for tissue engineering. Materials Today, 137, 126-141. https://doi.org/10.1016/j.mattod.2020.03.003
3D-printing nanocellulose-poly(3-hydroxybutyrate-&lt;em&gt;co&lt;/em&gt;-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
Cellulose-based microparticles for magnetically controlled optical modulation and sensing
Hausmann, M. K., Hauser, A., Siqueira, G., Libanori, R., Vehusheia, S. L., Schuerle, S., … Studart, A. R. (2020). Cellulose-based microparticles for magnetically controlled optical modulation and sensing. Small, 16(1), 1904251 (8 pp.). https://doi.org/10.1002/smll.201904251
Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds
Hausmann, M. K., Siqueira, G., Libanori, R., Kokkinis, D., Neels, A., Zimmermann, T., & Studart, A. R. (2020). Complex‐shaped cellulose composites made by wet densification of 3D printed scaffolds. Advanced Functional Materials, 30(4), 1904127 (11 pp.). https://doi.org/10.1002/adfm.201904127
Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites
Müller, L. A. E., Zimmermann, T., Nyström, G., Burgert, I., & Siqueira, G. (2020). Mechanical properties tailoring of 3D printed photoresponsive nanocellulose composites. Advanced Functional Materials, 30(35), 2002914 (9 pp.). https://doi.org/10.1002/adfm.202002914
Three-dimensional stable alginate-nanocellulose gels for biomedical applications: Towards tunable mechanical properties and cell growing
Siqueira, P., Siqueira, É., de Lima, A. E., Siqueira, G., Pinzón-Garcia, A. D., Lopes, A. P., … Botaro, V. R. (2019). Three-dimensional stable alginate-nanocellulose gels for biomedical applications: Towards tunable mechanical properties and cell growing. Nanomaterials, 9(1), 78 (22 pp.). https://doi.org/10.3390/nano9010078
Dynamics of cellulose nanocrystal alignment during 3D printing
Hausmann, M. K., Rühs, P. A., Siqueira, G., Läuger, J., Libanori, R., Zimmermann, T., & Studart, A. R. (2018). Dynamics of cellulose nanocrystal alignment during 3D printing. ACS Nano, 12(7), 6926-6937. https://doi.org/10.1021/acsnano.8b02366
All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels
Wang, J., Chiappone, A., Roppolo, I., Shao, F., Fantino, E., Lorusso, M., … Grützmacher, H. (2018). All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angewandte Chemie International Edition, 57(9), 2353-2356. https://doi.org/10.1002/anie.201710951
Length controlled kinetics of self-assembly of bidisperse nanotubes/nanorods in polymers
Gooneie, A., Sapkota, J., Shirole, A., & Holzer, C. (2017). Length controlled kinetics of self-assembly of bidisperse nanotubes/nanorods in polymers. Polymer, 118, 236-248. https://doi.org/10.1016/j.polymer.2017.05.010