Active Filters

  • (-) Keywords = cellulose
  • (-) Keywords ≠ TGA-FTIR
Search Results 1 - 20 of 24
Select Page
Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins
Luotonen, O. I. V., Greca, L. G., Nyström, G., Guo, J., Richardson, J. J., Rojas, O. J., & Tardy, B. L. (2022). Benchmarking supramolecular adhesive behavior of nanocelluloses, cellulose derivatives and proteins. Carbohydrate Polymers, 292, 119681 (9 pp.). https://doi.org/10.1016/j.carbpol.2022.119681
Cocultivation of white-rot fungi and microalgae in the presence of nanocellulose
Reyes, C., Sajó, Z., Lucas, M. S., Sinha, A., Schwarze, F. W. M. R., Ribera, J., & Nyström, G. (2022). Cocultivation of white-rot fungi and microalgae in the presence of nanocellulose. Microbiology Spectrum, 10(5), 1-12. https://doi.org/10.1128/spectrum.03041-22
Review on design strategies and applications of metal-organic framework-cellulose composites
Tu, K., Ding, Y., & Keplinger, T. (2022). Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydrate Polymers, 291, 119539 (18 pp.). https://doi.org/10.1016/j.carbpol.2022.119539
Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications
Berglund, L., Nissilä, T., Sivaraman, D., Komulainen, S., Telkki, V. V., & Oksman, K. (2021). Seaweed-derived alginate-cellulose nanofiber aerogel for insulation applications. ACS Applied Materials and Interfaces, 13(29), 34899-34909. https://doi.org/10.1021/acsami.1c07954
High-performance all-bio-based laminates derived from delignified wood
Frey, M., Schneider, L., Razi, H., Trachsel, E., Faude, E., Koch, S. M., … Burgert, I. (2021). High-performance all-bio-based laminates derived from delignified wood. ACS Sustainable Chemistry and Engineering, 9(29), 9638-9646. https://doi.org/10.1021/acssuschemeng.0c08373
In-situ phosphine oxide physical networks: a facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose
Nazir, R., Parida, D., Borgstädt, J., Lehner, S., Jovic, M., Rentsch, D., … Gaan, S. (2021). In-situ phosphine oxide physical networks: a facile strategy to achieve durable flame retardant and antimicrobial treatments of cellulose. Chemical Engineering Journal, 417, 128028 (14 pp.). https://doi.org/10.1016/j.cej.2020.128028
Enzyme activities of five white-rot fungi in the presence of nanocellulose
Reyes, C., Poulin, A., Nyström, G., Schwarze, F. W. M. R., & Ribera, J. (2021). Enzyme activities of five white-rot fungi in the presence of nanocellulose. Journal of Fungi, 7(3), 222 (17 pp.). https://doi.org/10.3390/jof7030222
CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen
Bünder, A., Sundman, O., Mahboubi, A., Persson, S., Mansfield, S. D., Rüggeberg, M., & Niittylä, T. (2020). CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. Plant Journal, 103, 1858-1868. https://doi.org/10.1111/tpj.14873
Microengineered biosynthesized cellulose as anti-fibrotic <em>in vivo</em> protection for cardiac implantable electronic devices
Robotti, F., Sterner, I., Bottan, S., Monné Rodríguez, J. M., Pellegrini, G., Schmidt, T., … Starck, C. (2020). Microengineered biosynthesized cellulose as anti-fibrotic in vivo protection for cardiac implantable electronic devices. Biomaterials, 229, 119583 (12 pp.). https://doi.org/10.1016/j.biomaterials.2019.119583
Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams
Sehaqui, H., Brahmi, Y., & Ju, W. (2020). Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams. Cellulose, 27(1), 263-271. https://doi.org/10.1007/s10570-019-02805-2
Antibacterial, cytocompatible, sustainably sourced: cellulose membranes with bifunctional peptides for advanced wound dressings
Weishaupt, R., Zünd, J. N., Heuberger, L., Zuber, F., Faccio, G., Robotti, F., … Guex, A. G. (2020). Antibacterial, cytocompatible, sustainably sourced: cellulose membranes with bifunctional peptides for advanced wound dressings. Advanced Healthcare Materials, 9(7), 1901850 (13 pp.). https://doi.org/10.1002/adhm.201901850
Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding
Zeng, Z., Wu, T., Han, D., Ren, Q., Siqueira, G., & Nyström, G. (2020). Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano, 14(3), 2927-2938. https://doi.org/10.1021/acsnano.9b07452
Comparative analysis of peat fibre properties and peat fibre-based knits flammability
Mikucioniene, D., Cepukone, L., Salmeia, K. A., & Gaan, S. (2018). Comparative analysis of peat fibre properties and peat fibre-based knits flammability. Autex Research Journal, 19, 157-164. https://doi.org/10.1515/aut-2018-0033
Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy
Salmeia, K. A., Jovic, M., Ragaisiene, A., Rukuiziene, Z., Milasius, R., Mikucioniene, D., & Gaan, S. (2016). Flammability of cellulose-based fibers and the effect of structure of phosphorus compounds on their flame retardancy. Polymers, 8(8), 293 (15 pp.). https://doi.org/10.3390/polym8080293
Analysis of lignin degradation on wood surfaces to create a UV-protecting cellulose rich layer
Volkmer, T., Noël, M., Arnold, M., & Strautmann, J. (2016). Analysis of lignin degradation on wood surfaces to create a UV-protecting cellulose rich layer. International Wood Products Journal, 7(3), 156-164. https://doi.org/10.1080/20426445.2016.1200826
A versatile strategy for grafting polymers to wood cell walls
Keplinger, T., Cabane, E., Chanana, M., Hass, P., Merk, V., Gierlinger, N., & Burgert, I. (2015). A versatile strategy for grafting polymers to wood cell walls. Acta Biomaterialia, 11(9), 256-263. https://doi.org/10.1016/j.actbio.2014.09.016
Renewable and functional wood materials by grafting polymerization within cell walls
Cabane, E., Keplinger, T., Merk, V., Hass, P., & Burgert, I. (2014). Renewable and functional wood materials by grafting polymerization within cell walls. ChemSusChem, 7(4), 1020-1025. https://doi.org/10.1002/cssc.201301107
Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers
Gerber, L., Zhang, B., Roach, M., Rende, U., Gorzsás, A., Kumar, M., … Sundberg, B. (2014). Deficient sucrose synthase activity in developing wood does not specifically affect cellulose biosynthesis, but causes an overall decrease in cell wall polymers. New Phytologist, 203(4), 1220-1230. https://doi.org/10.1111/nph.12888
Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA)
Gierlinger, N. (2014). Revealing changes in molecular composition of plant cell walls on the micron-level by Raman mapping and vertex component analysis (VCA). Frontiers in Plant Science, 5, 306 (10 pp.). https://doi.org/10.3389/fpls.2014.00306
A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose
Kulasinski, K., Keten, S., Churakov, S. V., Derome, D., & Carmeliet, J. (2014). A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. Cellulose, 21(3), 1103-1116. https://doi.org/10.1007/s10570-014-0213-7