| Electrohydrodynamics and its applications: Recent advances and future perspectives
Iranshahi, K., Defraeye, T., Rossi, R. M., & Müller, U. C. (2024). Electrohydrodynamics and its applications: Recent advances and future perspectives. International Journal of Heat and Mass Transfer, 232, 125895 (22 pp.). https://doi.org/10.1016/j.ijheatmasstransfer.2024.125895 |
| Energy-saving discharge needle shape for electrohydrodynamic airflow generation
Rubinetti, D., Iranshahi, K., Onwude, D. I., Nicolaï, B. M., Xie, L., & Defraeye, T. (2024). Energy-saving discharge needle shape for electrohydrodynamic airflow generation. Journal of Electrostatics, 127, 103876 (14 pp.). https://doi.org/10.1016/j.elstat.2023.103876 |
| Ionic wind amplifier for energy-efficient air propulsion: prototype design, development, and evaluation
Rubinetti, D., Iranshahi, K., Onwude, D., Reymond, J., Rajabi, A., Xie, L., … Defraeye, T. (2024). Ionic wind amplifier for energy-efficient air propulsion: prototype design, development, and evaluation. Cleaner Engineering and Technology, 19, 100728 (21 pp.). https://doi.org/10.1016/j.clet.2024.100728 |
| An in-silico proof-of-concept of electrohydrodynamic air amplifier for low-energy airflow generation
Rubinetti, D., Iranshahi, K., Onwude, D. I., Xie, L., Nicolaï, B., & Defraeye, T. (2023). An in-silico proof-of-concept of electrohydrodynamic air amplifier for low-energy airflow generation. Journal of Cleaner Production, 398, 136531 (16 pp.). https://doi.org/10.1016/j.jclepro.2023.136531 |
| Electrohydrodynamic air amplifier for low-energy airflow generation—An experimental proof-of-concept
Rubinetti, D., Iranshahi, K., Onwude, D., Nicolaï, B., Xie, L., & Defraeye, T. (2023). Electrohydrodynamic air amplifier for low-energy airflow generation—An experimental proof-of-concept. Frontiers in Energy Efficiency, 1, 1140586 (14 pp.). https://doi.org/10.3389/fenef.2023.1140586 |
| Electrohydrodynamic drying of plant-based foods and food model systems
Bashkir, I., Defraeye, T., Kudra, T., & Martynenko, A. (2020). Electrohydrodynamic drying of plant-based foods and food model systems. Food Engineering Reviews, 12, 473-497. https://doi.org/10.1007/s12393-020-09229-w |
| Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes
Gao, H., He, W., Zhao, Y. B., Opris, D. M., Xu, G., & Wang, J. (2020). Electret mechanisms and kinetics of electrospun nanofiber membranes and lifetime in filtration applications in comparison with corona-charged membranes. Journal of Membrane Science, 600, 117879 (11 pp.). https://doi.org/10.1016/j.memsci.2020.117879 |
| The role of convection in electrohydrodynamic drying
Martynenko, A., Astatkie, T., & Defraeye, T. (2020). The role of convection in electrohydrodynamic drying. Journal of Food Engineering, 271, 109777 (4 pp.). https://doi.org/10.1016/j.jfoodeng.2019.109777 |
| Electrohydrodynamic drying of multiple food products: evaluating the potential of emitter-collector electrode configurations for upscaling
Defraeye, T., & Martynenko, A. (2019). Electrohydrodynamic drying of multiple food products: evaluating the potential of emitter-collector electrode configurations for upscaling. Journal of Food Engineering, 240, 38-42. https://doi.org/10.1016/j.jfoodeng.2018.07.011 |
| Future perspectives for electrohydrodynamic drying of biomaterials
Defraeye, T., & Martynenko, A. (2018). Future perspectives for electrohydrodynamic drying of biomaterials. Drying Technology, 36(1), 1-10. https://doi.org/10.1080/07373937.2017.1326130 |