Active Filters

  • (-) Keywords = cytotoxicity
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
Antibiofilm activity of nanosilver coatings against <em>Staphylococcus aureus</em>
Geissel, F. J., Platania, V., Gogos, A., Herrmann, I. K., Belibasakis, G. N., Chatzinikolaidou, M., & Sotiriou, G. A. (2022). Antibiofilm activity of nanosilver coatings against Staphylococcus aureus. Journal of Colloid and Interface Science, 608, 3141-3150. https://doi.org/10.1016/j.jcis.2021.11.038
Toxicity of carbon nanomaterials - towards reliable viability assessment via new approach in flow cytometry
Malina, T., Poláková, K., Hirsch, C., Svoboda, L., & Zbořil, R. (2021). Toxicity of carbon nanomaterials - towards reliable viability assessment via new approach in flow cytometry. International Journal of Molecular Sciences, 22(14), 7750 (15 pp.). https://doi.org/10.3390/ijms22147750
Streptomycin sulfate-loaded niosomes enables increased antimicrobial and anti-biofilm activities
Mansouri, M., Khayam, N., Jamshidifar, E., Pourseif, T., Kianian, S., Mirzaie, A., … Ren, Q. (2021). Streptomycin sulfate-loaded niosomes enables increased antimicrobial and anti-biofilm activities. Frontiers in Bioengineering and Biotechnology, 9, 745099 (11 pp.). https://doi.org/10.3389/fbioe.2021.745099
Influence of ceftriaxone on human bone cell viability and in vitro mineralization potential is concentration- and time-dependent
Wiesli, M. G., Kaiser, J. P., Gautier, E., Wick, P., Maniura-Weber, K., Rottmar, M., & Wahl, P. (2021). Influence of ceftriaxone on human bone cell viability and in vitro mineralization potential is concentration- and time-dependent. Bone & Joint Research, 10(3), 218-225. https://doi.org/10.1302/2046-3758.103.BJR-2020-0412
Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties
Bertero, E., Hasegawa, M., Staubli, S., Pellicer, E., Herrmann, I. K., Sort, J., … Philippe, L. (2018). Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties. Surface and Coatings Technology, 349, 745-751. https://doi.org/10.1016/j.surfcoat.2018.06.003
On the cyclic deformation behavior, fracture properties and cytotoxicity of silicone-based elastomers for biomedical applications
Bernardi, L., Hopf, R., Sibilio, D., Ferrari, A., Ehret, A. E., & Mazza, E. (2017). On the cyclic deformation behavior, fracture properties and cytotoxicity of silicone-based elastomers for biomedical applications. Polymer Testing, 60, 117-123. https://doi.org/10.1016/j.polymertesting.2017.03.018
Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media
Kaiser, J. P., Roesslein, M., Diener, L., Wichser, A., Nowack, B., & Wick, P. (2017). Cytotoxic effects of nanosilver are highly dependent on the chloride concentration and the presence of organic compounds in the cell culture media. Journal of Nanobiotechnology, 15(1), 5 (11 pp.). https://doi.org/10.1186/s12951-016-0244-3
The silanol content and <em>in vitro</em> cytolytic activity of flame-made silica
Spyrogianni, A., Herrmann, I. K., Keevend, K., Pratsinis, S. E., & Wegner, K. (2017). The silanol content and in vitro cytolytic activity of flame-made silica. Journal of Colloid and Interface Science, 507, 95-106. https://doi.org/10.1016/j.jcis.2017.07.096
Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs
Weidenbacher, L., Abrishamkar, A., Rottmar, M., Guex, A. G., Maniura-Weber, K., deMello, A. J., … Fortunato, G. (2017). Electrospraying of microfluidic encapsulated cells for the fabrication of cell-laden electrospun hybrid tissue constructs. Acta Biomaterialia, 64, 137-147. https://doi.org/10.1016/j.actbio.2017.10.012
Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion
Civardi, C., Schlagenhauf, L., Kaiser, J. P., Hirsch, C., Mucchino, C., Wichser, A., … Schwarze, F. W. M. R. (2016). Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion. Journal of Nanobiotechnology, 14, 77 (10 pp.). https://doi.org/10.1186/s12951-016-0232-7
Quantitative analysis of the deposited nanoparticle dose on cell cultures by optical absorption spectroscopy
Spyrogianni, A., Herrmann, I. K., Lucas, M. S., Leroux, J. C., & Sotiriou, G. A. (2016). Quantitative analysis of the deposited nanoparticle dose on cell cultures by optical absorption spectroscopy. Nanomedicine, 11(19), 2483-2496. https://doi.org/10.2217/nnm-2016-0243
Controlling the release from silver electrodes by titanium adlayers for health monitoring
Amberg, M., Rupper, P., Storchenegger, R., Weder, M., & Hegemann, D. (2015). Controlling the release from silver electrodes by titanium adlayers for health monitoring. Nanomedicine: Nanotechnology, Biology and Medicine, 11(4), 845-853. https://doi.org/10.1016/j.nano.2014.12.017
Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology
Gordon, S., Daneshian, M., Bouwstra, J., Caloni, F., Constant, S., Davies, D. E., … Lehr, C. M. (2015). Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX: Alternatives to Animal Experimentation, 32(4), 327-378. https://doi.org/10.14573/altex.1510051
Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications
Grossenbacher, J., Gullo, M. R., Dalcanale, F., Blugan, G., Kuebler, J., Lecaudé, S., … Brugger, J. (2015). Cytotoxicity evaluation of polymer-derived ceramics for pacemaker electrode applications. Journal of Biomedical Materials Research. Part A, 103A(11), 3625-3632. https://doi.org/10.1002/jbm.a.35477
From implantation to degradation — are poly (l-lactide)/multiwall carbon nanotube composite materials really cytocompatible?
Obarzanek-Fojt, M., Elbs-Glatz, Y., Lizundia, E., Diener, L., Sarasua, J. R., & Bruinink, A. (2014). From implantation to degradation — are poly (l-lactide)/multiwall carbon nanotube composite materials really cytocompatible? Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), 1041-1051. https://doi.org/10.1016/j.nano.2013.12.012
Evaluation of biocompatibility using in vitro methods: interpretation and limitations
Bruinink, A., & Luginbuehl, R. (2012). Evaluation of biocompatibility using in vitro methods: interpretation and limitations. In C. Kasper, F. Witte, & R. Pörtner (Eds.), Advances in Biochemical Engineering/Biotechnology: Vol. 126. Tissue engineering III: cell - surface interactions for tissue culture (pp. 117-152). https://doi.org/10.1007/10_2011_111
A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells <I>in vitro</I>
Thurnherr, T., Brandenberger, C., Fischer, K., Diener, L., Manser, P., Maeder-Althaus, X., … Wick, P. (2011). A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicology Letters, 200(3), 176-186. https://doi.org/10.1016/j.toxlet.2010.11.012
A brief summary of carbon nanotubes science and technology: a health and safety perspective
Wick, P., Clift, M. J. D., Rösslein, M., & Rothen-Rutishauser, B. (2011). A brief summary of carbon nanotubes science and technology: a health and safety perspective. ChemSusChem, 4(7), 905-911. https://doi.org/10.1002/cssc.201100161
Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology?
Kaiser, J. P., Krug, H. F., & Wick, P. (2009). Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology? Nanomedicine, 4(1), 57-63. https://doi.org/10.2217/17435889.4.1.57