Active Filters

  • (-) Keywords = desorption
Search Results 1 - 8 of 8
  • RSS Feed
Select Page
Humic acid desorption from a positively charged nanocellulose surface
Sehaqui, H., Schaufelberger, L., Michen, B., & Zimmermann, T. (2017). Humic acid desorption from a positively charged nanocellulose surface. Journal of Colloid and Interface Science, 504, 500-506. https://doi.org/10.1016/j.jcis.2017.06.006
Heat and mass transfer of temperature-vacuum swing desorption for CO<SUB>2</SUB> capture from air
Wurzbacher, J. A., Gebald, C., Brunner, S., & Steinfeld, A. (2016). Heat and mass transfer of temperature-vacuum swing desorption for CO2 capture from air. Chemical Engineering Journal, 283, 1329-1338. https://doi.org/10.1016/j.cej.2015.08.035
Seasonal solar thermal absorption energy storage development
Daguenet-Frick, X., Gantenbein, P., Rommel, M., Fumey, B., Weber, R., Goonesekera, K., & Williamson, T. (2015). Seasonal solar thermal absorption energy storage development. Chimia, 69(12), 784-788. https://doi.org/10.2533/chimia.2015.784
Development of a numerical model for the reaction zone design of an aqueous sodium hydroxide seasonal thermal energy storage
Daguenet-Fricka, X., Gantenbein, P., Frank, E., Fumey, B., & Weber, R. (2015). Development of a numerical model for the reaction zone design of an aqueous sodium hydroxide seasonal thermal energy storage. Solar Energy, 121, 17-30. https://doi.org/10.1016/j.solener.2015.06.009
Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage
Daguenet-Frick, X., Gantenbein, P., Frank, E., Fumey, B., Weber, R., & Williamson, T. (2014). Reaction zone development for an aqueous sodium hydroxide seasonal thermal energy storage. In A. Lentz & D. Renné (Eds.), Energy procedia: Vol. 57. 2013 ISES solar world congress (pp. 2426-2435). https://doi.org/10.1016/j.egypro.2014.10.251
An investigation on the use of zeolite aggregates for internal curing of concrete
Ghourchian, S., Wyrzykowski, M., Lura, P., Shekarchi, M., & Ahmadi, B. (2013). An investigation on the use of zeolite aggregates for internal curing of concrete. Construction and Building Materials, 40, 135-144. https://doi.org/10.1016/j.conbuildmat.2012.10.009
Insight into the decomposition pathway of the complex hydride Al<SUB>3</SUB>Li<SUB>4</SUB>(BH<SUB>4</SUB>)<SUB>13</SUB>
Lindemann, I., Borgschulte, A., Callini, E., Züttel, A., Schultz, L., & Gutfleisch, O. (2013). Insight into the decomposition pathway of the complex hydride Al3Li4(BH4)13. International Journal of Hydrogen Energy, 38(6), 2790-2795. https://doi.org/10.1016/j.ijhydene.2012.12.012
Internal curing: discussion of the role of pore solution on relative humidity measurements and desorption of lightweight aggregate (LWA)
Castro, J., Lura, P., Rajabipour, F., Henkensiefken, R., & Weiss, J. (2010). Internal curing: discussion of the role of pore solution on relative humidity measurements and desorption of lightweight aggregate (LWA). In J. H. Ideker & A. Radlinska (Eds.), ACI special publication: Vol. 270. Advances in the material science of concrete (pp. 89-100).