Active Filters

  • (-) Keywords = drug delivery
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates
Giubilini, A., Bondioli, F., Messori, M., Nyström, G., & Siqueira, G. (2021). Advantages of additive manufacturing for biomedical applications of polyhydroxyalkanoates. Bioengineering, 8(2), 29 (31 pp.). https://doi.org/10.3390/bioengineering8020029
Biomaterials applications of cyclic polymers
Golba, B., Benetti, E. M., & De Geest, B. G. (2021). Biomaterials applications of cyclic polymers. Biomaterials, 267, 120468 (13 pp.). https://doi.org/10.1016/j.biomaterials.2020.120468
Controlling pH by electronic ion pumps to fight fibrosis
Guex, A. G., Poxson, D. J., Simon, D. T., Berggren, M., Fortunato, G., Rossi, R. M., … Rottmar, M. (2021). Controlling pH by electronic ion pumps to fight fibrosis. Applied Materials Today, 22, 100936 (11 pp.). https://doi.org/10.1016/j.apmt.2021.100936
Predicting transdermal fentanyl delivery using mechanistic simulations for tailored therapy
Defraeye, T., Bahrami, F., Ding, L., Innocenti Malini, R., Terrier, A., & Rossi, R. M. (2020). Predicting transdermal fentanyl delivery using mechanistic simulations for tailored therapy. Frontiers in Pharmacology, 11, 585393 (23 pp.). https://doi.org/10.3389/fphar.2020.585393
Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications
Gubala, V., Giovannini, G., Kunc, F., Monopoli, M. P., & Moore, C. J. (2020). Dye-doped silica nanoparticles: synthesis, surface chemistry and bioapplications. Cancer Nanotechnology, 11, 1 (43 pp.). https://doi.org/10.1186/s12645-019-0056-x
A methodological safe-by-design approach for the development of nanomedicines
Schmutz, M., Borges, O., Jesus, S., Borchard, G., Perale, G., Zinn, M., … Som, C. (2020). A methodological safe-by-design approach for the development of nanomedicines. Frontiers in Bioengineering and Biotechnology, 8, 258 (7 pp.). https://doi.org/10.3389/fbioe.2020.00258
Poly(4-Hydroxybutyrate): current state and perspectives
Utsunomia, C., Ren, Q., & Zinn, M. (2020). Poly(4-Hydroxybutyrate): current state and perspectives. Frontiers in Bioengineering and Biotechnology, 8, 257 (18 pp.). https://doi.org/10.3389/fbioe.2020.00257
Electrospray-based microencapsulation of epigallocatechin 3-gallate for local delivery into the intervertebral disc
Loepfe, M., Duss, A., Zafeiropoulou, K. A., Björgvinsdóttir, O., D’Este, M., Eglin, D., … Krupkova, O. (2019). Electrospray-based microencapsulation of epigallocatechin 3-gallate for local delivery into the intervertebral disc. Pharmaceutics, 11(9), 435 (15 pp.). https://doi.org/10.3390/pharmaceutics11090435
Physical structuring of injectable polymeric systems to controllably deliver nanosized extracellular vesicles
Nikravesh, N., Davies, O. G., Azoidis, I., Moakes, R. J. A., Marani, L., Turner, M., … Cox, S. C. (2019). Physical structuring of injectable polymeric systems to controllably deliver nanosized extracellular vesicles. Advanced Healthcare Materials, 8(9), 1801604 (11 pp.). https://doi.org/10.1002/adhm.201801604
Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules
Xu, J., Feng, Q., Lin, S., Yuan, W., Li, R., Li, J., … Bian, L. (2019). Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules. Biomaterials, 210, 51-61. https://doi.org/10.1016/j.biomaterials.2019.04.031
Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT <i>in vitro</i>
Ghitescu, R. E., Popa, A. M., Schipanski, A., Hirsch, C., Yazgan, G., Popa, V. I., … Fortunato, G. (2018). Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 122, 78-86. https://doi.org/10.1016/j.ejpb.2017.10.009
Selective etching of injection molded zirconia-toughened alumina: towards osseointegrated and antibacterial ceramic implants
Flamant, Q., Caravaca, C., Meille, S., Gremillard, L., Chevalier, J., Biotteau-Deheuvels, K., … Anglada, M. (2016). Selective etching of injection molded zirconia-toughened alumina: towards osseointegrated and antibacterial ceramic implants. Acta Biomaterialia, 46, 308-322. https://doi.org/10.1016/j.actbio.2016.09.017
Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix
Obarzanek-Fojt, M., Curdy, C., Loggia, N., Di Lena, F., Grieder, K., Bitar, M., & Wick, P. (2016). Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix. European Journal of Pharmaceutics and Biopharmaceutics, 107, 180-190. https://doi.org/10.1016/j.ejpb.2016.06.018
ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems
Pauly, A. C., Schöller, K., Baumann, L., Rossi, R. M., Dustmann, K., Ziener, U., … Scherer, L. J. (2015). ATRP-based synthesis and characterization of light-responsive coatings for transdermal delivery systems. Science and Technology of Advanced Materials, 16(3), 034604 (13 pp.). https://doi.org/10.1088/1468-6996/16/3/034604
Preparation of light-responsive membranes by a combined surface grafting and postmodification process
Schöller, K., Baumann, L., Hegemann, D., De Courten, D., Wolf, M., Rossi, R. M., & Scherer, L. J. (2014). Preparation of light-responsive membranes by a combined surface grafting and postmodification process. Journal of Visualized Experiments (85), e51680 (9 pp.). https://doi.org/10.3791/51680
Light-responsive caffeine transfer through porous polycarbonate
Baumann, L., de Courten, D., Wolf, M., Rossi, R. M., & Scherer, L. J. (2013). Light-responsive caffeine transfer through porous polycarbonate. ACS Applied Materials and Interfaces, 5(13), 5894-5897. https://doi.org/10.1021/am401218e
Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology?
Kaiser, J. P., Krug, H. F., & Wick, P. (2009). Nanomaterial cell interactions: how do carbon nanotubes affect cell physiology? Nanomedicine, 4(1), 57-63. https://doi.org/10.2217/17435889.4.1.57