Active Filters

  • (-) Keywords = energy storage
Search Results 1 - 20 of 24
Select Page
An overview and prospective on Al and Al-ion battery technologies
Elia, G. A., Kravchyk, K. V., Kovalenko, M. V., Chacón, J., Holland, A., & Wills, R. G. A. (2021). An overview and prospective on Al and Al-ion battery technologies. Journal of Power Sources, 481, 228870 (22 pp.). https://doi.org/10.1016/j.jpowsour.2020.228870
Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes
Gilshtein, E., Flox, C., Ali, F. S. M., Mehrabimatin, B., Fedorov, F. S., Lin, S., … Kallio, T. (2020). Superior environmentally friendly stretchable supercapacitor based on nitrogen-doped graphene/hydrogel and single-walled carbon nanotubes. Journal of Energy Storage, 30, 101505 (8 pp.). https://doi.org/10.1016/j.est.2020.101505
Building better dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2020). Building better dual-ion batteries. MRS Energy and Sustainability: A Review Journal, 7, e36 (7 pp.). https://doi.org/10.1557/mre.2020.38
Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications
Zhang, C. (J. ), Ma, Y., Zhang, X., Abdolhosseinzadeh, S., Sheng, H., Lan, W., … Nüesch, F. (2020). Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy and Environmental Materials, 3, 29-55. https://doi.org/10.1002/eem2.12058
Hole and protonic polarons in perovskites
Braun, A., Chen, Q., & Yelon, A. (2019). Hole and protonic polarons in perovskites. Chimia, 73(11), 936-942. https://doi.org/10.2533/chimia.2019.936
Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis
Gabrielli, P., Fürer, F., Mavromatidis, G., & Mazzotti, M. (2019). Robust and optimal design of multi-energy systems with seasonal storage through uncertainty analysis. Applied Energy, 238, 1192-1210. https://doi.org/10.1016/j.apenergy.2019.01.064
Direct solution‐based synthesis of the Na<sub>4</sub>(B<sub>12</sub>H<sub>12</sub>)(B<sub>10</sub>H<sub>10</sub>) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem, 12(21), 4832-4837. https://doi.org/10.1002/cssc.201902152
Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities
Kravchyk, K. V., & Kovalenko, M. V. (2019). Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities. Advanced Energy Materials, 9(35), 1901749 (16 pp.). https://doi.org/10.1002/aenm.201901749
Complex hydrides for energy storage
Milanese, C., Jensen, T. R., Hauback, B. C., Pistidda, C., Dornheim, M., Yang, H., … Baricco, M. (2019). Complex hydrides for energy storage. International Journal of Hydrogen Energy, 44, 7860-7874. https://doi.org/10.1016/j.ijhydene.2018.11.208
Renewable energy storage via CO<sub>2</sub> and H<sub>2</sub> conversion to methane and methanol: assessment for small scale applications
Moioli, E., Mutschler, R., & Züttel, A. (2019). Renewable energy storage via CO2 and H2 conversion to methane and methanol: assessment for small scale applications. Renewable and Sustainable Energy Reviews, 107, 497-506. https://doi.org/10.1016/j.rser.2019.03.022
Anatase TiO&lt;sub&gt;2&lt;/sub&gt; nanorods as cathode materials for aluminum-ion batteries
Wang, S., Kravchyk, K. V., Pigeot-Rémy, S., Tang, W., Krumeich, F., Wörle, M., … Kovalenko, M. V. (2019). Anatase TiO2 nanorods as cathode materials for aluminum-ion batteries. ACS Applied Nano Materials, 2(10), 6428-6435. https://doi.org/10.1021/acsanm.9b01391
A time-series-based approach for robust design of multi-energy systems with energy storage
Gabrielli, P., Fürer, F., Murray, P., Orehounig, K., Carmeliet, J., Gazzani, M., & Mazzotti, M. (2018). A time-series-based approach for robust design of multi-energy systems with energy storage. In A. Friedl, J. J. Klemeš, S. Radl, P. S. Varbanov, & T. Wallek (Eds.), Computer aided chemical engineering: Vol. 43. Proceedings of the 28th European symposium on computer aided process engineering (pp. 525-530). https://doi.org/10.1016/B978-0-444-64235-6.50093-0
Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights
Kravchyk, K. V., Piveteau, L., Caputo, R., He, M., Stadie, N. P., Bodnarchuk, M. I., … Kovalenko, M. V. (2018). Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano, 12(8), 8297-8307. https://doi.org/10.1021/acsnano.8b03572
Polypyrenes as high-performance cathode materials for aluminum batteries
Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R., & Kovalenko, M. V. (2018). Polypyrenes as high-performance cathode materials for aluminum batteries. Advanced Materials, 30(15), 1705644 (6 pp.). https://doi.org/10.1002/adma.201705644
Protons and the hydrogen economy
Chen, Q., & Braun, A. (2017). Protons and the hydrogen economy. MRS Energy and Sustainability: A Review Journal, 4, E14 (4 pp.). https://doi.org/10.1557/mre.2017.16
Energy in buildings. Policy, materials and solutions
Koebel, M. M., Wernery, J., & Malfait, W. J. (2017). Energy in buildings. Policy, materials and solutions. MRS Energy and Sustainability: A Review Journal, 4, E12 (24 pp.). https://doi.org/10.1557/mre.2017.14
Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries
Stadie, N. P., Wang, S., Kravchyk, K. V., & Kovalenko, M. V. (2017). Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 11(2), 1911-1919. https://doi.org/10.1021/acsnano.6b07995
Complex metal borohydrides: multifunctional materials for energy storage and conversion
Mohtadi, R., Remhof, A., & Jena, P. (2016). Complex metal borohydrides: multifunctional materials for energy storage and conversion. Journal of Physics: Condensed Matter, 28(35), 353001 (19 pp.). https://doi.org/10.1088/0953-8984/28/35/353001
Surface reactions are crucial for energy storage
Callini, E., Kato, S., Mauron, P., & Züttel, A. (2015). Surface reactions are crucial for energy storage. Chimia, 69(5), 269-273. https://doi.org/10.2533/chimia.2015.269
Evaluation of renewable energy sources integration potential in a new development area
Hsieh, S. S., & Orehounig, K. (2015). Evaluation of renewable energy sources integration potential in a new development area (p. (6 pp.). Presented at the 2nd energy for sustainability multidisciplinary conference (EfS 2015). .