Active Filters

  • (-) Keywords = fibres
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Tailoring fibre structure enabled by X-ray analytics for targeted biomedical applications
Schoeller, J., Avaro, J., Maurya, A. K., Rossi, R. M., & Neels, A. (2022). Tailoring fibre structure enabled by X-ray analytics for targeted biomedical applications. Chimia, 76(3), 229-235. https://doi.org/10.2533/chimia.2022.229
Mechanical properties and structure–function trade-offs in secondary xylem of young roots and stems
Plavcová, L., Gallenmüller, F., Morris, H., Khatamirad, M., Jansen, S., & Speck, T. (2019). Mechanical properties and structure–function trade-offs in secondary xylem of young roots and stems. Journal of Experimental Botany, 70(14), 3679-3691. https://doi.org/10.1093/jxb/erz286
The effect of CuO coatings on the electrokinetic properties of stone wool fibres determined by streaming potential measurements
Schabikowski, M., Zalewska, M., Kata, D., & Graule, T. (2016). The effect of CuO coatings on the electrokinetic properties of stone wool fibres determined by streaming potential measurements. Ceramics International, 42(12), 13944-13951. https://doi.org/10.1016/j.ceramint.2016.05.207
A new measurement method of piezoelectric properties of single ceramic fibres
Steinhausen, R., Kern, S., Pientschke, C., Beige, H., Clemens, F., & Heiber, J. (2010). A new measurement method of piezoelectric properties of single ceramic fibres. Journal of the European Ceramic Society, 30(2), 205-209. https://doi.org/10.1016/j.jeurceramsoc.2009.06.013
Reinforcement of concrete and shotcrete using bi-component polyolefin fibres
Akers, S., Kaufmann, J., Lübben, J., & Schwitter, E. (2009). Reinforcement of concrete and shotcrete using bi-component polyolefin fibres (p. (9 pp.). Presented at the Concrete solutions 09. .
Effects of rheology on the interface of Pb(Zr, Ti)O<SUB>3</SUB> monofilament composites obtained by co-extrusion
R. Ismael, M., Clemens, F., Bohac, W. M., Graule, T., & Hoffmann, M. J. (2009). Effects of rheology on the interface of Pb(Zr, Ti)O3 monofilament composites obtained by co-extrusion. Journal of the European Ceramic Society, 29(14), 3015-3021. https://doi.org/10.1016/j.jeurceramsoc.2009.05.015
Properties of Pb(Zr, Ti)O<SUB>3</SUB> fibres with a radial gradient structure
Heiber, J., Clemens, F., Helbig, U., de Meuron, A., Soltmann, C., Graule, T., & Hülsenberg, D. (2007). Properties of Pb(Zr, Ti)O3 fibres with a radial gradient structure. Acta Materialia, 55(19), 6499-6506. https://doi.org/10.1016/j.actamat.2007.08.004
Influence of the fibre diameter on the microstructure and the piezoelectric properties of PZT-fibres
Heiber, J., Clemens, F., Graule, T., & Hülsenberg, D. (2006). Influence of the fibre diameter on the microstructure and the piezoelectric properties of PZT-fibres. P. Vincenzini (Ed.), Advances in science and technology: Vol. 45. (pp. 2459-2463). Presented at the 11th international ceramics congress. https://doi.org/10.4028/www.scientific.net/AST.45.2459
Dispersion of lanthanoid-coated barium titanate in a paraffin-based extrusion binder system
Wegmann, M., Clemens, F., Hendry, A., & Graule, T. (2006). Dispersion of lanthanoid-coated barium titanate in a paraffin-based extrusion binder system. Ceramics International, 32(2), 147-156. https://doi.org/10.1016/j.ceramint.2005.01.011
Microstructure and mechanical properties of PZT fibres
Kornmann, X., & Huber, C. (2004). Microstructure and mechanical properties of PZT fibres. Journal of the European Ceramic Society, 24(7), 1987-1991. https://doi.org/10.1016/S0955-2219(03)00364-9
Synthesis of Si<sub>3</sub>N<sub>4</sub> fibres by gas-phase process
Vogt, U., Hofmann, H., & Krämer, V. (1994). Synthesis of Si3N4 fibres by gas-phase process. M. J. Hoffmann, P. F. Becher, & G. Petzow (Eds.), Key engineering materials: Vol. 89-91. (pp. 29-34). Presented at the International conference on silicon nitride-based ceramics. https://doi.org/10.4028/www.scientific.net/KEM.89-91.29