Active Filters

  • (-) Keywords = fractography
  • (-) Keywords ≠ C. fatigue
Search Results 1 - 15 of 15
  • RSS Feed
Select Page
Delamination resistance of GFRP‐epoxy rods with nanoparticle‐ and microparticle‐modified matrix and its correlation with the fracture properties of epoxy nanocomposites
Burda, I., Barbezat, M., & Brunner, A. J. (2020). Delamination resistance of GFRP‐epoxy rods with nanoparticle‐ and microparticle‐modified matrix and its correlation with the fracture properties of epoxy nanocomposites. Fatigue and Fracture of Engineering Materials and Structures, 43, 292-307. https://doi.org/10.1111/ffe.13122
Unsupervised pattern recognition of acoustic emission signals of adhesively bonded wood
Clerc, G., Sause, M. G. R., Brunner, A. J., Niemz, P., & Van de Kuilen, J. W. G. (2019). Unsupervised pattern recognition of acoustic emission signals of adhesively bonded wood. In X. Wang, U. H. Sauter, & R. J. Ross (Eds.), General Technical Report: Vol. FPL–GTR–272. Proceedings. 21st international nondestructive testing and evaluation of wood symposium (pp. 619-626). U.S. Department of Agriculture, Forest Service, Forest Products Laboratory.
Strength of an electrolyte supported solid oxide fuel cell
Fleischhauer, F., Bermejo, R., Danzer, R., Mai, A., Graule, T., & Kuebler, J. (2015). Strength of an electrolyte supported solid oxide fuel cell. Journal of Power Sources, 297, 158-167. https://doi.org/10.1016/j.jpowsour.2015.07.075
Dispersion of fullerene-like WS<SUB>2</SUB> nanoparticles within epoxy and the resulting fracture mechanics
Haba, D., Brunner, A. J., & Pinter, G. (2015). Dispersion of fullerene-like WS2 nanoparticles within epoxy and the resulting fracture mechanics. Composites Science and Technology, 119(10), 55-61. https://doi.org/10.1016/j.compscitech.2015.09.013
Post-hot isostatic pressing: a healing treatment for process related defects and laboratory grinding damage of dental zirconia?
Scherrer, S. S., Cattani-Lorente, M., Yoon, S., Karvonen, L., Pokrant, S., Rothbrust, F., & Kuebler, J. (2013). Post-hot isostatic pressing: a healing treatment for process related defects and laboratory grinding damage of dental zirconia? Dental Materials, 29(2), e180-e190. https://doi.org/10.1016/j.dental.2013.04.014
Failure analysis of zirconia ceramic watch bracelet components
Kuebler, J., & Blugan, G. (2011). Failure analysis of zirconia ceramic watch bracelet components. Engineering Failure Analysis, 18(2), 625-632. https://doi.org/10.1016/j.engfailanal.2010.09.028
Cyclic interlaminar crack growth in unidirectional and braided composites
Stelzer, S., Pinter, G., Wolfahrt, M., Brunner, A. J., & Noisternig, J. (2010). Cyclic interlaminar crack growth in unidirectional and braided composites. In W. Yao, J. Renard, & N. A. Himmel (Eds.), Fatigue behaviour of fiber reinforced polymers. Experiments and simulations (p. (17 pp.). DEStech Publications.
Analysis of a tragic accident on a summer toboggan run
Piskoty, G., Klotz, U. E., Kovacs, G., Weisse, B., Rütti, T. F., & Stutz, A. (2007). Analysis of a tragic accident on a summer toboggan run. Engineering Failure Analysis, 14(6), 1083-1092. https://doi.org/10.1016/j.engfailanal.2006.11.057
Application of the ESEM technique in wood research. Part II. Comparison of operational modes
Turkulin, H., Holzer, L., Richter, K., & Sell, J. (2005). Application of the ESEM technique in wood research. Part II. Comparison of operational modes. Wood and Fiber Science, 37(4), 565-573.
Application of the ESEM technique in wood research: part I. Optimization of imaging parameters and working conditions
Turkulin, H., Holzer, L., Richter, K., & Sell, J. (2005). Application of the ESEM technique in wood research: part I. Optimization of imaging parameters and working conditions. Wood and Fiber Science, 37(4), 552-564.
Application of the ESEM technique in wood research
Turkulin, H., Holzer, L., & Sell, J. (2003). Application of the ESEM technique in wood research. (Research and Work Report EMPA wood laboratory, Report No.: 115/51). Empa.
Fractography of advanced ceramics – the CEN pre-standard
Morrell, R., & Kübler, J. (2002). Fractography of advanced ceramics – the CEN pre-standard. J. Dusza (Ed.), Key engineering materials: Vol. 223. (pp. 19-26). Presented at the Fractography of advanced ceramics. https://doi.org/10.4028/www.scientific.net/KEM.223.19
Analysis of fatigue mechanism in locked coil wire ropes by means of fractography
Woodtli, J., & Hellwig, C. (1997). Analysis of fatigue mechanism in locked coil wire ropes by means of fractography. In B. L. Karihaloo, Y. W. Mai, M. I. Ripley, & R. O. Ritchie (Eds.), ICF-9. Advances in fracture research. Proceedings. Volume 5. Testing and characterization methods, and interfacial fracture mechanics (pp. 2587-2593). Pergamon Press.
Assessment of wood photodegradation by microtensile testing
Derbyshire, H., Miller, E. R., Sell, J., & Turkulin, H. (1995). Assessment of wood photodegradation by microtensile testing. Drvna Industrija, 46(3), 123-132.
Fracture toughness of advanced ceramics by the surface crack in flexure (SCF) method: a VAMAS round robin
Quinn, G. D., Kuebler, J., & Gettings, R. J. (1994). Fracture toughness of advanced ceramics by the surface crack in flexure (SCF) method: a VAMAS round robin. (VAMAS report, Report No.: 17). VAMAS.