Active Filters

  • (-) Keywords = graphene
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Single nanosized graphene/TiO<sub>x</sub> multi-shells on TiO<sub>2</sub> core via rapid-concomitant reaction pathway on metal oxide/polymer interface
Kato, K., Xin, Y., Vaucher, S., & Shirai, T. (2022). Single nanosized graphene/TiOx multi-shells on TiO2 core via rapid-concomitant reaction pathway on metal oxide/polymer interface. Scripta Materialia, 208, 114358 (6 pp.). https://doi.org/10.1016/j.scriptamat.2021.114358
Towards a more environmentally sustainable production of graphene-based materials. Building on current knowledge to offer recommendations
Beloin‑Saint‑Pierre, D., & Hischier, R. (2021). Towards a more environmentally sustainable production of graphene-based materials. Building on current knowledge to offer recommendations. International Journal of Life Cycle Assessment, 26, 327-343. https://doi.org/10.1007/s11367-020-01864-z
Unbalanced 2D chiral crystallization of pentahelicene propellers and their planarization into nanographenes
Voigt, J., Roy, M., Baljozović, M., Wäckerlin, C., Coquerel, Y., Gingras, M., & Ernst, K. H. (2021). Unbalanced 2D chiral crystallization of pentahelicene propellers and their planarization into nanographenes. Chemistry: A European Journal, 27(40), 10251-10254. https://doi.org/10.1002/chem.202101223
Nanoprinted quantum dot–graphene photodetectors
Grotevent, M. J., Hail, C. U., Yakunin, S., Dirin, D. N., Thodkar, K., Borin Barin, G., … Shorubalko, I. (2019). Nanoprinted quantum dot–graphene photodetectors. Advanced Optical Materials, 7(11), 1900019 (7 pp.). https://doi.org/10.1002/adom.201900019
Graphene grown from flat and bowl shaped polycyclic aromatic hydrocarbons on Cu(111)
Li, J., Lampart, S., Siegel, J. S., Ernst, K. H., & Wäckerlin, C. (2019). Graphene grown from flat and bowl shaped polycyclic aromatic hydrocarbons on Cu(111). ChemPhysChem, 20(18), 2354-2359. https://doi.org/10.1002/cphc.201900291
Conducting and lithiophilic MXene/graphene frameworks for high-capacity, dendrite-free lithium-metal anodes
Shi, H., Zhang, C. (J. ), Lu, P., Dong, Y., Wen, P., & Wu, Z. S. (2019). Conducting and lithiophilic MXene/graphene frameworks for high-capacity, dendrite-free lithium-metal anodes. ACS Nano, 13(12), 14308-14318. https://doi.org/10.1021/acsnano.9b07710
Safety assessment of graphene-based materials: focus on human health and the environment
Fadeel, B., Bussy, C., Merino, S., Vázquez, E., Flahaut, E., Mouchet, F., … Bianco, A. (2018). Safety assessment of graphene-based materials: focus on human health and the environment. ACS Nano, 12(11), 10582-10620. https://doi.org/10.1021/acsnano.8b04758
Observation of high accuracy resistance quantization in CVD graphene
Thodkar, K., Schönenberger, C., Calame, M., Lüönd, F., Overney, F., & Jeanneret, B. (2018). Observation of high accuracy resistance quantization in CVD graphene. In 2018 conference on precision electromagnetic measurements (CPEM 2018) (p. (2 pp.). https://doi.org/10.1109/CPEM.2018.8500820
Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene
Hong, H. K., Jo, J., Hwang, D., Lee, J., Kim, N. Y., Son, S., … Lee, Z. (2017). Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Letters, 17(1), 120-127. https://doi.org/10.1021/acs.nanolett.6b03621
Ion beam profiling from the interaction with a freestanding 2D layer
Shorubalko, I., Choi, K., Stiefel, M., & Park, H. G. (2017). Ion beam profiling from the interaction with a freestanding 2D layer. Beilstein Journal of Nanotechnology, 8, 682-687. https://doi.org/10.3762/bjnano.8.73
On the mechanism of hydrophilicity of graphene
Hong, G., Han, Y., Schutzius, T. M., Wang, Y., Pan, Y., Hu, M., … Poulikakos, D. (2016). On the mechanism of hydrophilicity of graphene. Nano Letters, 16(7), 4447-4453. https://doi.org/10.1021/acs.nanolett.6b01594
Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization
Thodkar, K., El Abbassi, M., Lüönd, F., Overney, F., Schönenberger, C., Jeanneret, B., & Calame, M. (2016). Comparative study of single and multi domain CVD graphene using large-area Raman mapping and electrical transport characterization. Physica Status Solidi: Rapid Research Letters, 10(11), 807-811. https://doi.org/10.1002/pssr.201600211
Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption
Choucair, M., & Mauron, P. (2015). Versatile preparation of graphene-based nanocomposites and their hydrogen adsorption. International Journal of Hydrogen Energy, 40(18), 6158-6164. https://doi.org/10.1016/j.ijhydene.2015.03.065
On-surface synthesis of BN-substituted heteroaromatic networks
Sánchez-Sánchez, C., Brüller, S., Sachdev, H., Müllen, K., Krieg, M., Bettinger, H. F., … Ruffieux, P. (2015). On-surface synthesis of BN-substituted heteroaromatic networks. ACS Nano, 9(9), 9228-9235. https://doi.org/10.1021/acsnano.5b03895
Classification framework for graphene-based materials
Wick, P., Louw-Gaume, A. E., Kucki, M., Krug, H. F., Kostarelos, K., Fadeel, B., … Bianco, A. (2014). Classification framework for graphene-based materials. Angewandte Chemie International Edition, 53(30), 7714-7718. https://doi.org/10.1002/anie.201403335
Synthesis, characterization, electronic and gas-sensing properties towards H<SUB>2</SUB> and CO of transparent, large-area, low-layer graphene
Kayhan, E., Prasad, R. M., Gurlo, A., Yilmazoglu, O., Engstler, J., Ionescu, E., … Schneider, J. J. (2012). Synthesis, characterization, electronic and gas-sensing properties towards H2 and CO of transparent, large-area, low-layer graphene. Chemistry: A European Journal, 18(47), 14996-15003. https://doi.org/10.1002/chem.201201880
Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot
Liati, A., Spiteri, A., Dimopoulos Eggenschwiler, P., & Vogel-Schäuble, N. (2012). Microscopic investigation of soot and ash particulate matter derived from biofuel and diesel: implications for the reactivity of soot. Journal of Nanoparticle Research, 14(11), 1224 (18 pp.). https://doi.org/10.1007/s11051-012-1224-7
Methane adsorption on graphene from <I>first principles</I> including dispersion interaction
Thierfelder, C., Witte, M., Blankenburg, S., Rauls, E., & Schmidt, W. G. (2011). Methane adsorption on graphene from first principles including dispersion interaction. Surface Science, 605(7-8), 746-749. https://doi.org/10.1016/j.susc.2011.01.012