Active Filters

  • (-) Keywords = graphene nanoribbons
Search Results 1 - 20 of 23
Select Page
Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach
Darawish, R., Overbeck, J., Müllen, K., Calame, M., Ruffieux, P., Fasel, R., & Barin, G. B. (2024). Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach. Carbon, 218, 118688 (8 pp.). https://doi.org/10.1016/j.carbon.2023.118688
Electronic decoupling and hole-doping of graphene nanoribbons on metal substrates by chloride intercalation
Kinikar, A., Englmann, T. G., Di Giovannantonio, M., Bassi, N., Xiang, F., Stolz, S., … Ruffieux, P. (2024). Electronic decoupling and hole-doping of graphene nanoribbons on metal substrates by chloride intercalation. ACS Nano, 18, 16622-16631. https://doi.org/10.1021/acsnano.4c00484
Local work function on graphene nanoribbons
Rothhardt, D., Kimouche, A., Klamroth, T., & Hoffmann-Vogel, R. (2024). Local work function on graphene nanoribbons. Beilstein Journal of Nanotechnology, 15, 1125-1131. https://doi.org/10.3762/BJNANO.15.91
MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons
Bouwmeester, D., Ghiasi, T. S., Borin Barin, G., Müllen, K., Ruffieux, P., Fasel, R., & van der Zant, H. S. J. (2023). MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons. ACS Applied Nano Materials, 6(15), 13935-13944. https://doi.org/10.1021/acsanm.3c01630
Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture
Zhang, J., Braun, O., Borin Barin, G., Sangtarash, S., Overbeck, J., Darawish, R., … Calame, M. (2023). Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture. Advanced Electronic Materials, 9(4), 2201204 (8 pp.). https://doi.org/10.1002/aelm.202201204
Growth optimization and device integration of narrow‐bandgap graphene nanoribbons
Borin Barin, G., Sun, Q., Di Giovannantonio, M., Du, C. ‐Z., Wang, X. ‐Y., Llinas, J. P., … Ruffieux, P. (2022). Growth optimization and device integration of narrow‐bandgap graphene nanoribbons. Small, 18(31), 2202301 (10 pp.). https://doi.org/10.1002/smll.202202301
On-surface thermal stability of a graphenic structure incorporating a tropone moiety
Márquez, I. R., Ruíz del Árbol, N., Urgel, J. I., Villalobos, F., Fasel, R., López, M. F., … Sánchez-Sánchez, C. (2022). On-surface thermal stability of a graphenic structure incorporating a tropone moiety. Nanomaterials, 12(3), 488 (10 pp.). https://doi.org/10.3390/nano12030488
Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions
Wang, S., Nishiuchi, T., Pignedoli, C. A., Yao, X., Di Giovannantonio, M., Zhao, Y., … Fasel, R. (2022). Steering on-surface reactions through molecular steric hindrance and molecule-substrate van der Waals interactions. Quantum Frontiers, 1, 23 (8 pp.). https://doi.org/10.1007/s44214-022-00023-9
Optimized graphene electrodes for contacting graphene nanoribbons
Braun, O., Overbeck, J., El Abbassi, M., Käser, S., Furrer, R., Olziersky, A., … Calame, M. (2021). Optimized graphene electrodes for contacting graphene nanoribbons. Carbon, 184, 331-339. https://doi.org/10.1016/j.carbon.2021.08.001
Quantum electronic transport across "bite" defects in graphene nanoribbons
Pizzochero, M., Čerņevičs, K., Borin Barin, G., Wang, S., Ruffieux, P., Fasel, R., & Yazyev, O. V. (2021). Quantum electronic transport across "bite" defects in graphene nanoribbons. 2D Materials, 8(3), 035025 (9 pp.). https://doi.org/10.1088/2053-1583/abf716
Exploring intramolecular methyl-methyl coupling on a metal surface for edge-extended graphene nanoribbons
Qiu, Z., Sun, Q., Wang, S., Borin Barin, G., Dumslaff, B., Ruffieux, P., … Fasel, R. (2021). Exploring intramolecular methyl-methyl coupling on a metal surface for edge-extended graphene nanoribbons. Organic Materials, 3(2), 128-133. https://doi.org/10.1055/s-0041-1726295
Graphene nanoribbons with mixed cove-cape-zigzag edge structure
Shinde, P. P., Liu, J., Dienel, T., Gröning, O., Dumslaff, T., Mühlinghaus, M., … Passerone, D. (2021). Graphene nanoribbons with mixed cove-cape-zigzag edge structure. Carbon, 175, 50-59. https://doi.org/10.1016/j.carbon.2020.12.069
On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons
Xu, X., Di Giovannantonio, M., Urgel, J. I., Pignedoli, C. A., Ruffieux, P., Müllen, K., … Narita, A. (2021). On-surface activation of benzylic C-H bonds for the synthesis of pentagon-fused graphene nanoribbons. Nano Research, 14, 4754-4759. https://doi.org/10.1007/s12274-021-3419-2
Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors
El Abbassi, M., Perrin, M. L., Borin Barin, G., Sangtarash, S., Overbeck, J., Braun, O., … Calame, M. (2020). Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors. ACS Nano, 14(5), 5754-5762. https://doi.org/10.1021/acsnano.0c00604
Massive dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary
Sun, Q., Gröning, O., Overbeck, J., Braun, O., Perrin, M. L., Borin Barin, G., … Ruffieux, P. (2020). Massive dirac fermion behavior in a low bandgap graphene nanoribbon near a topological phase boundary. Advanced Materials, 32(12), 1906054 (8 pp.). https://doi.org/10.1002/adma.201906054
Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons
Zhao, S., Borin Barin, G., Cao, T., Overbeck, J., Darawish, R., Lyu, T., … Wang, F. (2020). Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons. Nano Letters, 20(1), 1124-1130. https://doi.org/10.1021/acs.nanolett.9b04497
Surface-synthesized graphene nanoribbons for room-temperature switching devices: substrate transfer and ex-situ characterization
Borin Barin, G., Fairbrother, A., Rotach, L., Bayle, M., Paillet, M., Liang, L., … Ruffieux, P. (2019). Surface-synthesized graphene nanoribbons for room-temperature switching devices: substrate transfer and ex-situ characterization. ACS Applied Nano Materials, 2(4), 2184-2192. https://doi.org/10.1021/acsanm.9b00151
Detachment dynamics of graphene nanoribbons on gold
Gigli, L., Kawai, S., Guerra, R., Manini, N., Pawlak, R., Feng, X., … Vanossi, A. (2019). Detachment dynamics of graphene nanoribbons on gold. ACS Nano, 13(1), 689-697. https://doi.org/10.1021/acsnano.8b07894
A universal length-dependent vibrational mode in graphene nanoribbons
Overbeck, J., Borin Barin, G., Daniels, C., Perrin, M. L., Braun, O., Sun, Q., … Calame, M. (2019). A universal length-dependent vibrational mode in graphene nanoribbons. ACS Nano, 13, 13083-13091. https://doi.org/10.1021/acsnano.9b05817
Optimized substrates and measurement approaches for Raman spectroscopy of graphene nanoribbons
Overbeck, J., Borin Barin, G., Daniels, C., Perrin, M., Liang, L., Braun, O., … Ruffieux, P. (2019). Optimized substrates and measurement approaches for Raman spectroscopy of graphene nanoribbons. Physica Status Solidi B: Basic Research, 256(12), 1900343 (8 pp.). https://doi.org/10.1002/pssb.201900343